Fractional calculus of variations for double integrals

We consider fractional isoperimetric problems of calculus of variations with double integrals via the recent modifled Riemann{Liouville approach. A necessary optimality condition of Euler{Lagrange type, in the form of a multitime fractional PDE, is proved, as well as a su-cient condition and fractional natural boundary conditions.

[1]  Delfim F. M. Torres,et al.  Necessary optimality conditions for fractional action-like integrals of variational calculus with Riemann-Liouville derivatives of order (α, β) , 2007 .

[2]  C. Udrişte,et al.  Multitime Controllability, Observability and Bang-Bang Principle , 2008 .

[3]  Niels Henrik Abel,et al.  Œuvres complètes de Niels Henrik Abel , 1881 .

[4]  Riewe,et al.  Nonconservative Lagrangian and Hamiltonian mechanics. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[5]  C. Udrişte Plenary lecture V: controllability and observability of multi-time linear PDE systems , 2008, ICONS 2008.

[6]  G. Jumarie,et al.  Modified Riemann-Liouville derivative and fractional Taylor series of nondifferentiable functions further results , 2006, Comput. Math. Appl..

[7]  D. Opris,et al.  Euler-Lagrange-Hamilton dynamics with fractional action , 2008 .

[8]  Delfim F. M. Torres,et al.  NECESSARY OPTIMALITY CONDITIONS FOR FRACTIONAL DIFFERENCE PROBLEMS OF THE CALCULUS OF VARIATIONS , 2010, 1007.0594.

[9]  Delfim F. M. Torres,et al.  Fractional actionlike variational problems , 2008, 0804.4500.

[10]  Delfim F. M. Torres,et al.  Modified optimal energy and initial memory of fractional continuous-time linear systems , 2010, Signal Process..

[11]  Agnieszka B. Malinowska,et al.  Composition Functionals in Fractional Calculus of Variations , 2010, 1009.2671.

[12]  Agnieszka B. Malinowska,et al.  Generalized natural boundary conditions for fractional variational problems in terms of the Caputo derivative , 2010, Comput. Math. Appl..

[13]  C. Udri,et al.  Nonholonomic approach of multitime maximum principle , 2009 .

[14]  B. Brunt The calculus of variations , 2003 .

[15]  Ewa Girejko,et al.  The contingent epiderivative and the calculus of variations on time scales , 2012 .

[16]  Delfim F. M. Torres,et al.  Fractional conservation laws in optimal control theory , 2007, 0711.0609.

[17]  C. Udriste,et al.  Generalized multitime Lagrangians and Hamiltonians , 2008 .

[18]  Om P. Agrawal,et al.  Formulation of Euler–Lagrange equations for fractional variational problems , 2002 .

[19]  Agnieszka B. Malinowska,et al.  A fractional calculus of variations for multiple integrals with application to vibrating string , 2010, 1001.2722.

[20]  Agnieszka B. Malinowska,et al.  A general backwards calculus of variations via duality , 2010, Optim. Lett..

[21]  Delfim F. M. Torres,et al.  Calculus of variations on time scales with nabla derivatives , 2008, 0807.2596.

[22]  Guy Jumarie,et al.  Table of some basic fractional calculus formulae derived from a modified Riemann-Liouville derivative for non-differentiable functions , 2009, Appl. Math. Lett..

[23]  Dumitru Baleanu,et al.  Fractional Newtonian mechanics , 2010 .

[24]  Constantin Udriste,et al.  Equivalence of multitime optimal control problems. , 2010 .

[25]  P Monica,et al.  Optimal control of electromagnetic energy , 2010 .

[26]  Delfim F. M. Torres,et al.  Necessary and sufficient conditions for the fractional calculus of variations with Caputo derivatives , 2010, 1007.2937.

[27]  C. Udriste,et al.  Simplified multitime maximum principle , 2009 .

[28]  Delfim F. M. Torres,et al.  Discrete-time fractional variational problems , 2010, Signal Process..

[29]  Agnieszka B. Malinowska,et al.  Natural boundary conditions in the calculus of variations , 2008, 0812.0705.

[30]  Hans Jürgen Ohlbach,et al.  Author ’ s Address , 2022 .

[31]  R. Hilfer Applications Of Fractional Calculus In Physics , 2000 .

[32]  Delfim F. M. Torres,et al.  Calculus of variations with fractional derivatives and fractional integrals , 2009, Appl. Math. Lett..

[33]  H. Srivastava,et al.  Theory and Applications of Fractional Differential Equations , 2006 .

[34]  Delfim F. M. Torres,et al.  Fractional Noether's theorem in the Riesz-Caputo sense , 2010, Appl. Math. Comput..

[35]  Constantin Udriste,et al.  Hamiltonian approaches of field theory , 2004, Int. J. Math. Math. Sci..

[36]  Delfim F. M. Torres,et al.  Minimal modified energy control for fractional linear control systems with the Caputo derivative , 2010, 1004.3113.

[37]  Frederick E. Riewe,et al.  Mechanics with fractional derivatives , 1997 .

[38]  I. Podlubny Fractional differential equations , 1998 .

[39]  G. Jumarie Fractional Hamilton-Jacobi equation for the optimal control of nonrandom fractional dynamics with fractional cost function , 2007 .