Exploring the link between MORF4L1 and risk of breast cancer

S. Seal | N. Rahman | F. Couch | T. Rebbeck | J. Benítez | R. Eeles | E. John | A. Spurdle | M. Southey | D. Easton | A. Antoniou | Å. Borg | O. Johannsson | D. Evans | G. Chenevix-Trench | H. Nevanlinna | U. Hamann | J. Beesley | Xiaoqing Chen | M. Pujana | V. Moreno | C. Lázaro | K. Nathanson | M. Blok | H. Meijers-Heijboer | Xianshu Wang | T. Heikkinen | P. Radice | P. Peterlongo | S. Manoukian | S. Verhoef | A. Renwick | D. Torres | L. McGuffog | A. Godwin | J. Brunet | E. Friedman | K. Harbst | E. Imyanitov | J. Peyrat | A. Osorio | J. Surrallés | S. Domchek | D. Stoppa-Lyonnet | N. Bonifaci | C. Maxwell | H. Aguilar | Z. Fredericksen | M. Porteous | A. Viel | S. Peock | M. Cook | C. Oliver | D. Frost | O. Sinilnikova | S. Mazoyer | F. Hogervorst | J. Rantala | R. Platte | C. J. Asperen | K. Tominaga | O. Pereira-smith | L. Ottini | M. Stenmark-Askmalm | B. Pasini | M. Ramírez | S. Hodgson | D. Schindler | R. Depping | M. Bogliolo | D. Cuadras | Y. Bignon | J. Bueren | F. Lalloo | M. Ausems | M. Daly | D. Goldgar | B. Kaufman | M. Vreeswijk | K. Neveling | A. Miron | J. Cerón | L. Bernard | B. Peissel | P. Morrison | M. Rookus | A. Pauw | L. Izatt | T. V. van Os | C. Brewer | R. Davidson | S. Healey | I. Blanco | T. Caldés | M. Caligo | R. Janavicius | J. Cook | F. Douglas | L. Castéra | Y. Laitman | M. Barile | J. Fernández-Rodríguez | A. de Pauw | N. Uhrhammer | M. Collonge-Rame | I. Mortemousque | K. Ong | Montserrat Porta-de-la-Riva | C. Chu | G. Martrat | L. Gómez-Baldó | H. Ehrencrona | R. Milgrom | D. Zaffaroni | Sandra Fert Ferrer | A. Savarese | G. Roversi | Saundra M Buys | D. Bodmer | P. Vennin | M. Castellà | A. L. Putignano | T. A. Os | Marissa Vargas Ramírez | G. Barbany-Bustinza | Carole Verny-Pierre | F. K. Pientka | Emiko Tominaga | J. Kühl | Gonzalo Hernandez | M. Tilanus-Linthorst | S. Buys | J. Cook | Helena Aguilar | Roni Milgrom | Dominique Stoppa-Lyonnet | D. Evans | Radka Platte | D. Evans | D. Stoppa-Lyonnet | E. Friedman | Isabelle Mortemousque | Clare T. Oliver | Johanna Rantala | Diana Torres | D. Evans | Gisela Barbany-Bustinza | Margaret R. Cook

[1]  A. Auerbach,et al.  Mutations of the SLX4 gene in Fanconi anemia , 2011, Nature Genetics.

[2]  David J Adams,et al.  Disruption of mouse Slx4, a regulator of structure-specific nucleases, phenocopies Fanconi Anemia , 2011, Nature Genetics.

[3]  S. Seal,et al.  Exploring the link between MORF4L1 and risk of breast cancer , 2011 .

[4]  W. Foulkes,et al.  Mutation analysis of the gene encoding the PALB2-binding protein MRG15 in BRCA1/2-negative breast cancer families , 2010, Journal of Human Genetics.

[5]  N. Drinkwater,et al.  Identification of susceptibility loci in a mouse model of KRASG12D-driven pancreatic cancer. , 2010, Cancer research.

[6]  R. J. McFarlane,et al.  Biological roles of translin and translin-associated factor-X: RNA metabolism comes to the fore. , 2010, The Biochemical journal.

[7]  A. D’Andrea,et al.  Susceptibility pathways in Fanconi's anemia and breast cancer. , 2010, The New England journal of medicine.

[8]  Dieter Niederacher,et al.  Germline mutations in breast and ovarian cancer pedigrees establish RAD51C as a human cancer susceptibility gene , 2010, Nature Genetics.

[9]  Franca Fraternali,et al.  Mutation of the RAD51C gene in a Fanconi anemia–like disorder , 2010, Nature Genetics.

[10]  P. Andreassen,et al.  MRG15 binds directly to PALB2 and stimulates homology-directed repair of chromosomal breaks , 2010, Journal of Cell Science.

[11]  Yi-Song Wang,et al.  FANCC suppresses short telomere-initiated telomere sister chromatid exchange. , 2010, Human molecular genetics.

[12]  L. Holm,et al.  The Pfam protein families database , 2005, Nucleic Acids Res..

[13]  Mads Thomassen,et al.  Common variants in LSP1, 2q35 and 8q24 and breast cancer risk for BRCA1 and BRCA2 mutation carriers. , 2009, Human molecular genetics.

[14]  R. Maeda,et al.  Histone chaperones ASF1 and NAP1 differentially modulate removal of active histone marks by LID-RPD3 complexes during NOTCH silencing. , 2009, Molecular cell.

[15]  S. Gygi,et al.  Defining the Human Deubiquitinating Enzyme Interaction Landscape , 2009, Cell.

[16]  Junjie Chen,et al.  MRG15 Is a Novel PALB2-interacting Factor Involved in Homologous Recombination* , 2009, The Journal of Biological Chemistry.

[17]  K. Tominaga,et al.  MRG15, a component of HAT and HDAC complexes, is essential for proliferation and differentiation of neural precursor cells , 2009, Journal of neuroscience research.

[18]  Alison P. Klein,et al.  Exomic Sequencing Identifies PALB2 as a Pancreatic Cancer Susceptibility Gene , 2009, Science.

[19]  K. J. Patel,et al.  Monoubiquitylation in the Fanconi anemia DNA damage response pathway. , 2009, DNA repair.

[20]  P. Andreassen,et al.  A role for monoubiquitinated FANCD2 at telomeres in ALT cells , 2009, Nucleic acids research.

[21]  E. Birney,et al.  Pfam: the protein families database , 2013, Nucleic Acids Res..

[22]  Junho Lee,et al.  Essential role of brc-2 in chromosome integrity of germ cells in C. elegans. , 2008, Molecules and cells.

[23]  Lilia M. Iakoucheva,et al.  A Protein Domain-Based Interactome Network for C. elegans Early Embryogenesis , 2008, Cell.

[24]  E. Gilson,et al.  Topoisomerase IIIα is required for normal proliferation and telomere stability in alternative lengthening of telomeres , 2008, The EMBO journal.

[25]  Dieter Niederacher,et al.  Common breast cancer-predisposition alleles are associated with breast cancer risk in BRCA1 and BRCA2 mutation carriers. , 2008, American journal of human genetics.

[26]  E. Hartmann,et al.  Nuclear translocation of hypoxia-inducible factors (HIFs): involvement of the classical importin alpha/beta pathway. , 2008, Biochimica et biophysica acta.

[27]  S C West,et al.  BRCA2: a universal recombinase regulator , 2007, Oncogene.

[28]  F. Couch,et al.  RAD51 135G-->C modifies breast cancer risk among BRCA2 mutation carriers: results from a combined analysis of 19 studies. , 2007, American journal of human genetics.

[29]  K. Tominaga,et al.  Mrg15 null and heterozygous mouse embryonic fibroblasts exhibit DNA‐repair defects post exposure to gamma ionizing radiation , 2007, FEBS letters.

[30]  K. Gunsalus,et al.  Network modeling links breast cancer susceptibility and centrosome dysfunction. , 2007, Nature genetics.

[31]  Weidong Wang Emergence of a DNA-damage response network consisting of Fanconi anaemia and BRCA proteins , 2007, Nature Reviews Genetics.

[32]  Christine A. Orengo,et al.  Inferring Function Using Patterns of Native Disorder in Proteins , 2007, PLoS Comput. Biol..

[33]  W. Willett,et al.  A genome-wide association study identifies alleles in FGFR2 associated with risk of sporadic postmenopausal breast cancer , 2007, Nature Genetics.

[34]  Grant W. Brown,et al.  Functional dissection of protein complexes involved in yeast chromosome biology using a genetic interaction map , 2007, Nature.

[35]  Katri Pylkäs,et al.  A recurrent mutation in PALB2 in Finnish cancer families , 2007, Nature.

[36]  S. Seal,et al.  PALB2, which encodes a BRCA2-interacting protein, is a breast cancer susceptibility gene , 2007, Nature Genetics.

[37]  C. Mathew,et al.  Biallelic mutations in PALB2 cause Fanconi anemia subtype FA-N and predispose to childhood cancer , 2007, Nature Genetics.

[38]  Kunio Inoue,et al.  MRG-1, an autosome-associated protein, silences X-linked genes and protects germline immortality in Caenorhabditis elegans , 2007, Development.

[39]  N. Caporaso Genetic Modifiers of Cancer Risk , 2006 .

[40]  Nazneen Rahman,et al.  Truncating mutations in the Fanconi anemia J gene BRIP1 are low-penetrance breast cancer susceptibility alleles , 2006, Nature Genetics.

[41]  F. Couch,et al.  Control of BRCA2 cellular and clinical functions by a nuclear partner, PALB2. , 2006, Molecular cell.

[42]  Theresa Stiernagle Maintenance of C. elegans. , 2006, WormBook : the online review of C. elegans biology.

[43]  S. L. Wong,et al.  Towards a proteome-scale map of the human protein–protein interaction network , 2005, Nature.

[44]  C. Mathew,et al.  The DNA helicase BRIP1 is defective in Fanconi anemia complementation group J , 2005, Nature Genetics.

[45]  S. Cantor,et al.  BACH1 is critical for homologous recombination and appears to be the Fanconi anemia gene product FANCJ. , 2005, Cancer cell.

[46]  J. Ott,et al.  The BRCA1-interacting helicase BRIP1 is deficient in Fanconi anemia , 2005, Nature Genetics.

[47]  J. Chang-Claude,et al.  A weighted cohort approach for analysing factors modifying disease risks in carriers of high‐risk susceptibility genes , 2005, Genetic epidemiology.

[48]  M. Matzuk,et al.  MRG15 Regulates Embryonic Development and Cell Proliferation , 2005, Molecular and Cellular Biology.

[49]  S. Boulton,et al.  RAD-51-Dependent and -Independent Roles of a Caenorhabditis elegans BRCA2-Related Protein during DNA Double-Strand Break Repair , 2005, Molecular and Cellular Biology.

[50]  M. Matzuk,et al.  MRG 15 Regulates Embryonic Development and Cell Proliferation , 2005 .

[51]  M. Blasco,et al.  Telomere dynamics in Fancg-deficient mouse and human cells. , 2004, Blood.

[52]  H. Manor,et al.  The human protein translin specifically binds single-stranded microsatellite repeats, d(GT)n, and G-strand telomeric repeats, d(TTAGGG)n: a study of the binding parameters. , 2004, Journal of molecular biology.

[53]  S. Batalov,et al.  A gene atlas of the mouse and human protein-encoding transcriptomes. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[54]  Marc Vidal,et al.  Increasing specificity in high-throughput yeast two-hybrid experiments. , 2004, Methods.

[55]  J. S. Sodhi,et al.  Prediction and functional analysis of native disorder in proteins from the three kingdoms of life. , 2004, Journal of molecular biology.

[56]  Weidong Wang,et al.  A Multiprotein Nuclear Complex Connects Fanconi Anemia and Bloom Syndrome , 2003, Molecular and Cellular Biology.

[57]  T. Kawano,et al.  Corrigendum to “MRG-1, a mortality factor-related chromodomain protein, is required maternally for primordial germ cells to initiate mitotic proliferation in C. elegans” [Mech. Dev. 114 (2002) 61–69] , 2003, Mechanisms of Development.

[58]  J. Lucchesi,et al.  MRG15, a Novel Chromodomain Protein, Is Present in Two Distinct Multiprotein Complexes Involved in Transcriptional Activation* , 2002, The Journal of Biological Chemistry.

[59]  Hans Joenje,et al.  Biallelic Inactivation of BRCA2 in Fanconi Anemia , 2002, Science.

[60]  T. Kawano,et al.  MRG-1, a mortality factor-related chromodomain protein, is required maternally for primordial germ cells to initiate mitotic proliferation in C. elegans , 2002, Mechanisms of Development.

[61]  Nazneen Rahman,et al.  Low-penetrance susceptibility to breast cancer due to CHEK2*1100delC in noncarriers of BRCA1 or BRCA2 mutations , 2002, Nature Genetics.

[62]  M. Blasco,et al.  Breaks at telomeres and TRF2-independent end fusions in Fanconi anemia. , 2002, Human molecular genetics.

[63]  I. Stagljar,et al.  Direct association of Bloom's syndrome gene product with the human mismatch repair protein MLH1. , 2001, Nucleic acids research.

[64]  M. Vidal,et al.  High-throughput yeast two-hybrid assays for large-scale protein interaction mapping. , 2001, Methods.

[65]  S Rozen,et al.  Primer3 on the WWW for general users and for biologist programmers. , 2000, Methods in molecular biology.

[66]  E. Carosella,et al.  Accelerated telomere shortening and telomerase activation in Fanconi's anaemia , 1999, British journal of haematology.

[67]  J. Tooze,et al.  Progressive telomere shortening in aplastic anemia. , 1998, Blood.

[68]  G. Eichele,et al.  Embryonic lethality and radiation hypersensitivity mediated by Rad51 in mice lacking Brca2 , 1997, Nature.

[69]  Yonghong Xiao,et al.  Association of BRCA1 with Rad51 in Mitotic and Meiotic Cells , 1997, Cell.

[70]  Julian Peto,et al.  Identification of the breast cancer susceptibility gene BRCA2 , 1996, Nature.

[71]  A. Omori,et al.  A novel gene, Translin, encodes a recombination hotspot binding protein associated with chromosomal translocations , 1995, Nature Genetics.

[72]  A. Sancar,et al.  Formation of a ternary complex by human XPA, ERCC1, and ERCC4(XPF) excision repair proteins. , 1994, Proceedings of the National Academy of Sciences of the United States of America.