Exploring the link between MORF4L1 and risk of breast cancer
暂无分享,去创建一个
S. Seal | N. Rahman | F. Couch | T. Rebbeck | J. Benítez | R. Eeles | E. John | A. Spurdle | M. Southey | D. Easton | A. Antoniou | Å. Borg | O. Johannsson | D. Evans | G. Chenevix-Trench | H. Nevanlinna | U. Hamann | J. Beesley | Xiaoqing Chen | M. Pujana | V. Moreno | C. Lázaro | K. Nathanson | M. Blok | H. Meijers-Heijboer | Xianshu Wang | T. Heikkinen | P. Radice | P. Peterlongo | S. Manoukian | S. Verhoef | A. Renwick | D. Torres | L. McGuffog | A. Godwin | J. Brunet | E. Friedman | K. Harbst | E. Imyanitov | J. Peyrat | A. Osorio | J. Surrallés | S. Domchek | D. Stoppa-Lyonnet | N. Bonifaci | C. Maxwell | H. Aguilar | Z. Fredericksen | M. Porteous | A. Viel | S. Peock | M. Cook | C. Oliver | D. Frost | O. Sinilnikova | S. Mazoyer | F. Hogervorst | J. Rantala | R. Platte | C. J. Asperen | K. Tominaga | O. Pereira-smith | L. Ottini | M. Stenmark-Askmalm | B. Pasini | M. Ramírez | S. Hodgson | D. Schindler | R. Depping | M. Bogliolo | D. Cuadras | Y. Bignon | J. Bueren | F. Lalloo | M. Ausems | M. Daly | D. Goldgar | B. Kaufman | M. Vreeswijk | K. Neveling | A. Miron | J. Cerón | L. Bernard | B. Peissel | P. Morrison | M. Rookus | A. Pauw | L. Izatt | T. V. van Os | C. Brewer | R. Davidson | S. Healey | I. Blanco | T. Caldés | M. Caligo | R. Janavicius | J. Cook | F. Douglas | L. Castéra | Y. Laitman | M. Barile | J. Fernández-Rodríguez | A. de Pauw | N. Uhrhammer | M. Collonge-Rame | I. Mortemousque | K. Ong | Montserrat Porta-de-la-Riva | C. Chu | G. Martrat | L. Gómez-Baldó | H. Ehrencrona | R. Milgrom | D. Zaffaroni | Sandra Fert Ferrer | A. Savarese | G. Roversi | Saundra M Buys | D. Bodmer | P. Vennin | M. Castellà | A. L. Putignano | T. A. Os | Marissa Vargas Ramírez | G. Barbany-Bustinza | Carole Verny-Pierre | F. K. Pientka | Emiko Tominaga | J. Kühl | Gonzalo Hernandez | M. Tilanus-Linthorst | S. Buys | J. Cook | Helena Aguilar | Roni Milgrom | Dominique Stoppa-Lyonnet | D. Evans | Radka Platte | D. Evans | D. Stoppa-Lyonnet | E. Friedman | Isabelle Mortemousque | Clare T. Oliver | Johanna Rantala | Diana Torres | D. Evans | Gisela Barbany-Bustinza | Margaret R. Cook
[1] A. Auerbach,et al. Mutations of the SLX4 gene in Fanconi anemia , 2011, Nature Genetics.
[2] David J Adams,et al. Disruption of mouse Slx4, a regulator of structure-specific nucleases, phenocopies Fanconi Anemia , 2011, Nature Genetics.
[3] S. Seal,et al. Exploring the link between MORF4L1 and risk of breast cancer , 2011 .
[4] W. Foulkes,et al. Mutation analysis of the gene encoding the PALB2-binding protein MRG15 in BRCA1/2-negative breast cancer families , 2010, Journal of Human Genetics.
[5] N. Drinkwater,et al. Identification of susceptibility loci in a mouse model of KRASG12D-driven pancreatic cancer. , 2010, Cancer research.
[6] R. J. McFarlane,et al. Biological roles of translin and translin-associated factor-X: RNA metabolism comes to the fore. , 2010, The Biochemical journal.
[7] A. D’Andrea,et al. Susceptibility pathways in Fanconi's anemia and breast cancer. , 2010, The New England journal of medicine.
[8] Dieter Niederacher,et al. Germline mutations in breast and ovarian cancer pedigrees establish RAD51C as a human cancer susceptibility gene , 2010, Nature Genetics.
[9] Franca Fraternali,et al. Mutation of the RAD51C gene in a Fanconi anemia–like disorder , 2010, Nature Genetics.
[10] P. Andreassen,et al. MRG15 binds directly to PALB2 and stimulates homology-directed repair of chromosomal breaks , 2010, Journal of Cell Science.
[11] Yi-Song Wang,et al. FANCC suppresses short telomere-initiated telomere sister chromatid exchange. , 2010, Human molecular genetics.
[12] L. Holm,et al. The Pfam protein families database , 2005, Nucleic Acids Res..
[13] Mads Thomassen,et al. Common variants in LSP1, 2q35 and 8q24 and breast cancer risk for BRCA1 and BRCA2 mutation carriers. , 2009, Human molecular genetics.
[14] R. Maeda,et al. Histone chaperones ASF1 and NAP1 differentially modulate removal of active histone marks by LID-RPD3 complexes during NOTCH silencing. , 2009, Molecular cell.
[15] S. Gygi,et al. Defining the Human Deubiquitinating Enzyme Interaction Landscape , 2009, Cell.
[16] Junjie Chen,et al. MRG15 Is a Novel PALB2-interacting Factor Involved in Homologous Recombination* , 2009, The Journal of Biological Chemistry.
[17] K. Tominaga,et al. MRG15, a component of HAT and HDAC complexes, is essential for proliferation and differentiation of neural precursor cells , 2009, Journal of neuroscience research.
[18] Alison P. Klein,et al. Exomic Sequencing Identifies PALB2 as a Pancreatic Cancer Susceptibility Gene , 2009, Science.
[19] K. J. Patel,et al. Monoubiquitylation in the Fanconi anemia DNA damage response pathway. , 2009, DNA repair.
[20] P. Andreassen,et al. A role for monoubiquitinated FANCD2 at telomeres in ALT cells , 2009, Nucleic acids research.
[21] E. Birney,et al. Pfam: the protein families database , 2013, Nucleic Acids Res..
[22] Junho Lee,et al. Essential role of brc-2 in chromosome integrity of germ cells in C. elegans. , 2008, Molecules and cells.
[23] Lilia M. Iakoucheva,et al. A Protein Domain-Based Interactome Network for C. elegans Early Embryogenesis , 2008, Cell.
[24] E. Gilson,et al. Topoisomerase IIIα is required for normal proliferation and telomere stability in alternative lengthening of telomeres , 2008, The EMBO journal.
[25] Dieter Niederacher,et al. Common breast cancer-predisposition alleles are associated with breast cancer risk in BRCA1 and BRCA2 mutation carriers. , 2008, American journal of human genetics.
[26] E. Hartmann,et al. Nuclear translocation of hypoxia-inducible factors (HIFs): involvement of the classical importin alpha/beta pathway. , 2008, Biochimica et biophysica acta.
[27] S C West,et al. BRCA2: a universal recombinase regulator , 2007, Oncogene.
[28] F. Couch,et al. RAD51 135G-->C modifies breast cancer risk among BRCA2 mutation carriers: results from a combined analysis of 19 studies. , 2007, American journal of human genetics.
[29] K. Tominaga,et al. Mrg15 null and heterozygous mouse embryonic fibroblasts exhibit DNA‐repair defects post exposure to gamma ionizing radiation , 2007, FEBS letters.
[30] K. Gunsalus,et al. Network modeling links breast cancer susceptibility and centrosome dysfunction. , 2007, Nature genetics.
[31] Weidong Wang. Emergence of a DNA-damage response network consisting of Fanconi anaemia and BRCA proteins , 2007, Nature Reviews Genetics.
[32] Christine A. Orengo,et al. Inferring Function Using Patterns of Native Disorder in Proteins , 2007, PLoS Comput. Biol..
[33] W. Willett,et al. A genome-wide association study identifies alleles in FGFR2 associated with risk of sporadic postmenopausal breast cancer , 2007, Nature Genetics.
[34] Grant W. Brown,et al. Functional dissection of protein complexes involved in yeast chromosome biology using a genetic interaction map , 2007, Nature.
[35] Katri Pylkäs,et al. A recurrent mutation in PALB2 in Finnish cancer families , 2007, Nature.
[36] S. Seal,et al. PALB2, which encodes a BRCA2-interacting protein, is a breast cancer susceptibility gene , 2007, Nature Genetics.
[37] C. Mathew,et al. Biallelic mutations in PALB2 cause Fanconi anemia subtype FA-N and predispose to childhood cancer , 2007, Nature Genetics.
[38] Kunio Inoue,et al. MRG-1, an autosome-associated protein, silences X-linked genes and protects germline immortality in Caenorhabditis elegans , 2007, Development.
[39] N. Caporaso. Genetic Modifiers of Cancer Risk , 2006 .
[40] Nazneen Rahman,et al. Truncating mutations in the Fanconi anemia J gene BRIP1 are low-penetrance breast cancer susceptibility alleles , 2006, Nature Genetics.
[41] F. Couch,et al. Control of BRCA2 cellular and clinical functions by a nuclear partner, PALB2. , 2006, Molecular cell.
[42] Theresa Stiernagle. Maintenance of C. elegans. , 2006, WormBook : the online review of C. elegans biology.
[43] S. L. Wong,et al. Towards a proteome-scale map of the human protein–protein interaction network , 2005, Nature.
[44] C. Mathew,et al. The DNA helicase BRIP1 is defective in Fanconi anemia complementation group J , 2005, Nature Genetics.
[45] S. Cantor,et al. BACH1 is critical for homologous recombination and appears to be the Fanconi anemia gene product FANCJ. , 2005, Cancer cell.
[46] J. Ott,et al. The BRCA1-interacting helicase BRIP1 is deficient in Fanconi anemia , 2005, Nature Genetics.
[47] J. Chang-Claude,et al. A weighted cohort approach for analysing factors modifying disease risks in carriers of high‐risk susceptibility genes , 2005, Genetic epidemiology.
[48] M. Matzuk,et al. MRG15 Regulates Embryonic Development and Cell Proliferation , 2005, Molecular and Cellular Biology.
[49] S. Boulton,et al. RAD-51-Dependent and -Independent Roles of a Caenorhabditis elegans BRCA2-Related Protein during DNA Double-Strand Break Repair , 2005, Molecular and Cellular Biology.
[50] M. Matzuk,et al. MRG 15 Regulates Embryonic Development and Cell Proliferation , 2005 .
[51] M. Blasco,et al. Telomere dynamics in Fancg-deficient mouse and human cells. , 2004, Blood.
[52] H. Manor,et al. The human protein translin specifically binds single-stranded microsatellite repeats, d(GT)n, and G-strand telomeric repeats, d(TTAGGG)n: a study of the binding parameters. , 2004, Journal of molecular biology.
[53] S. Batalov,et al. A gene atlas of the mouse and human protein-encoding transcriptomes. , 2004, Proceedings of the National Academy of Sciences of the United States of America.
[54] Marc Vidal,et al. Increasing specificity in high-throughput yeast two-hybrid experiments. , 2004, Methods.
[55] J. S. Sodhi,et al. Prediction and functional analysis of native disorder in proteins from the three kingdoms of life. , 2004, Journal of molecular biology.
[56] Weidong Wang,et al. A Multiprotein Nuclear Complex Connects Fanconi Anemia and Bloom Syndrome , 2003, Molecular and Cellular Biology.
[57] T. Kawano,et al. Corrigendum to “MRG-1, a mortality factor-related chromodomain protein, is required maternally for primordial germ cells to initiate mitotic proliferation in C. elegans” [Mech. Dev. 114 (2002) 61–69] , 2003, Mechanisms of Development.
[58] J. Lucchesi,et al. MRG15, a Novel Chromodomain Protein, Is Present in Two Distinct Multiprotein Complexes Involved in Transcriptional Activation* , 2002, The Journal of Biological Chemistry.
[59] Hans Joenje,et al. Biallelic Inactivation of BRCA2 in Fanconi Anemia , 2002, Science.
[60] T. Kawano,et al. MRG-1, a mortality factor-related chromodomain protein, is required maternally for primordial germ cells to initiate mitotic proliferation in C. elegans , 2002, Mechanisms of Development.
[61] Nazneen Rahman,et al. Low-penetrance susceptibility to breast cancer due to CHEK2*1100delC in noncarriers of BRCA1 or BRCA2 mutations , 2002, Nature Genetics.
[62] M. Blasco,et al. Breaks at telomeres and TRF2-independent end fusions in Fanconi anemia. , 2002, Human molecular genetics.
[63] I. Stagljar,et al. Direct association of Bloom's syndrome gene product with the human mismatch repair protein MLH1. , 2001, Nucleic acids research.
[64] M. Vidal,et al. High-throughput yeast two-hybrid assays for large-scale protein interaction mapping. , 2001, Methods.
[65] S Rozen,et al. Primer3 on the WWW for general users and for biologist programmers. , 2000, Methods in molecular biology.
[66] E. Carosella,et al. Accelerated telomere shortening and telomerase activation in Fanconi's anaemia , 1999, British journal of haematology.
[67] J. Tooze,et al. Progressive telomere shortening in aplastic anemia. , 1998, Blood.
[68] G. Eichele,et al. Embryonic lethality and radiation hypersensitivity mediated by Rad51 in mice lacking Brca2 , 1997, Nature.
[69] Yonghong Xiao,et al. Association of BRCA1 with Rad51 in Mitotic and Meiotic Cells , 1997, Cell.
[70] Julian Peto,et al. Identification of the breast cancer susceptibility gene BRCA2 , 1996, Nature.
[71] A. Omori,et al. A novel gene, Translin, encodes a recombination hotspot binding protein associated with chromosomal translocations , 1995, Nature Genetics.
[72] A. Sancar,et al. Formation of a ternary complex by human XPA, ERCC1, and ERCC4(XPF) excision repair proteins. , 1994, Proceedings of the National Academy of Sciences of the United States of America.