Anisotropic thermal conductivity in single crystal β-gallium oxide

The thermal conductivities of β-Ga2O3 single crystals along four different crystal directions were measured in the temperature range of 80–495 K using the time domain thermoreflectance method. A large anisotropy was found. At room temperature, the [010] direction has the highest thermal conductivity of 27.0 ± 2.0 W/mK, while that along the [100] direction has the lowest value of 10.9 ± 1.0 W/mK. At high temperatures, the thermal conductivity follows a ∼1/T relationship characteristic of Umklapp phonon scattering, indicating phonon-dominated heat transport in the β-Ga2O3 crystal. The measured experimental thermal conductivity is supported by first-principles calculations, which suggest that the anisotropy in thermal conductivity is due to the differences of the speed of sound along different crystal directions.

[1]  R. Peierls,et al.  Quantum theory of solids , 1956 .

[2]  Gernot Deinzer,et al.  Ab initio theory of the lattice thermal conductivity in diamond , 2009 .

[3]  J. Pankove,et al.  Thermal Conductivity of GaN, 25-360 K , 1977 .

[4]  Akito Kuramata,et al.  MBE grown Ga2O3 and its power device applications , 2013 .

[5]  D. Broido,et al.  Thermal conductivity and large isotope effect in GaN from first principles. , 2012, Physical review letters.

[6]  T. Paszkiewicz,et al.  Thermal conductivity of GaN crystals in 4.2-300 K range , 2003 .

[7]  Charles Elbaum,et al.  Ultrasonic Methods in Solid State Physics , 1969 .

[8]  G. Svensson,et al.  A Reinvestigation of β-Gallium Oxide , 1996 .

[9]  C. Kittel Introduction to solid state physics , 1954 .

[10]  K. Esfarjani,et al.  Gallium arsenide thermal conductivity and optical phonon relaxation times from first-principles calculations , 2012, 1209.6350.

[11]  Reinhard Uecker,et al.  On the bulk β-Ga2O3 single crystals grown by the Czochralski method , 2014 .

[12]  Akito Kuramata,et al.  Gallium oxide (Ga2O3) metal-semiconductor field-effect transistors on single-crystal β-Ga2O3 (010) substrates , 2012 .

[13]  Stefano de Gironcoli,et al.  QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials , 2009, Journal of physics. Condensed matter : an Institute of Physics journal.

[14]  R. Mitdank,et al.  Temperature-dependent thermal conductivity in Mg-doped and undoped β-Ga2O3 bulk-crystals , 2014, 1407.4272.

[15]  G. A. Slack,et al.  Some effects of oxygen impurities on AlN and GaN , 2002 .

[16]  Libai Huang,et al.  Thermal conductivity of organic bulk heterojunction solar cells: an unusual binary mixing effect. , 2014, Physical chemistry chemical physics : PCCP.

[17]  High-voltage field effect transistors with wide-bandgap β-Ga2O3 nanomembranes , 2013, 1310.6824.

[18]  K. Esfarjani,et al.  Resonant bonding leads to low lattice thermal conductivity , 2014, Nature Communications.

[19]  M. Gu,et al.  Lattice dynamical, dielectric, and thermodynamic properties of β-Ga2O3 from first principles , 2007 .

[20]  N. Mingo,et al.  Intrinsic lattice thermal conductivity of semiconductors from first principles , 2007 .

[21]  Akito Kuramata,et al.  Device-Quality β-Ga2O3 Epitaxial Films Fabricated by Ozone Molecular Beam Epitaxy , 2012 .

[22]  Gang Chen Nanoscale energy transport and conversion : a parallel treatment of electrons, molecules, phonons, and photons , 2005 .

[23]  R. Pandey,et al.  Electronic and thermodynamic properties of β-Ga2O3 , 2006 .

[24]  K. Shimamura,et al.  Excitation and photoluminescence of pure and Si-doped β-Ga2O3 single crystals , 2008 .

[25]  Gang Chen,et al.  Nanoscale heat transfer--from computation to experiment. , 2013, Physical chemistry chemical physics : PCCP.

[26]  Libai Huang,et al.  Tuning the thermal conductivity of solar cell polymers through side chain engineering. , 2014, Physical chemistry chemical physics : PCCP.

[27]  M. Shur,et al.  Properties of advanced semiconductor materials : GaN, AlN, InN, BN, SiC, SiGe , 2001 .

[28]  Gang Chen,et al.  Heat transport in silicon from first-principles calculations , 2011, 1107.5288.

[29]  Testa,et al.  Green's-function approach to linear response in solids. , 1987, Physical review letters.

[30]  A. Schmidt Optical characterization of thermal transport from the nanoscale to the macroscale , 2008 .