A unitary joint diagonalization algorithm for nonsymmetric higher‐order tensors based on Givens‐like rotations

[1]  Vince D. Calhoun,et al.  Preserving subject variability in group fMRI analysis: performance evaluation of GICA vs. IVA , 2014, Front. Syst. Neurosci..

[2]  Jacob Benesty,et al.  Pearson Correlation Coefficient , 2009 .

[3]  M. Bronstein,et al.  Matrix commutators: their asymptotic metric properties and relation to approximate joint diagonalization , 2013 .

[4]  Gilles Chabriel,et al.  A Direct Algorithm for Nonorthogonal Approximate Joint Diagonalization , 2012, IEEE Transactions on Signal Processing.

[5]  Tülay Adali,et al.  Complex-valued independent vector analysis: Application to multivariate Gaussian model , 2012, Signal Process..

[6]  Xun Chen,et al.  Underdetermined Joint Blind Source Separation for Two Datasets Based on Tensor Decomposition , 2016, IEEE Signal Processing Letters.

[7]  Eric Moreau,et al.  Fast Jacobi algorithm for non-orthogonal joint diagonalization of non-symmetric third-order tensors , 2015, 2015 23rd European Signal Processing Conference (EUSIPCO).

[8]  Joos Vandewalle,et al.  A Multilinear Singular Value Decomposition , 2000, SIAM J. Matrix Anal. Appl..

[9]  M. Kilmer,et al.  Factorization strategies for third-order tensors , 2011 .

[10]  Tamara G. Kolda,et al.  Tensor Decompositions and Applications , 2009, SIAM Rev..

[11]  Jeffrey M. Hausdorff,et al.  Physionet: Components of a New Research Resource for Complex Physiologic Signals". Circu-lation Vol , 2000 .

[12]  Tülay Adali,et al.  Joint blind source separation by generalized joint diagonalization of cumulant matrices , 2011, Signal Process..

[13]  Eric Moreau,et al.  Non-orthogonal Simultaneous Diagonalization of K-Order Complex Tensors for Source Separation , 2017, IEEE Signal Processing Letters.

[14]  Joos Vandewalle,et al.  Independent component analysis and (simultaneous) third-order tensor diagonalization , 2001, IEEE Trans. Signal Process..

[15]  V. Calhoun,et al.  Multisubject Independent Component Analysis of fMRI: A Decade of Intrinsic Networks, Default Mode, and Neurodiagnostic Discovery , 2012, IEEE Reviews in Biomedical Engineering.

[17]  Eric Moreau,et al.  A generalization of joint-diagonalization criteria for source separation , 2001, IEEE Trans. Signal Process..

[18]  Ngai Wong,et al.  Symmetric tensor decomposition by an iterative eigendecomposition algorithm , 2014, J. Comput. Appl. Math..

[19]  H. Vincent Poor,et al.  Probabilistic Tensor Canonical Polyadic Decomposition With Orthogonal Factors , 2017, IEEE Transactions on Signal Processing.

[20]  Pierre Comon,et al.  Canonical Polyadic Decomposition with a Columnwise Orthonormal Factor Matrix , 2012, SIAM J. Matrix Anal. Appl..

[21]  Selin Aviyente,et al.  Multiscale analysis for higher-order tensors , 2019, Optical Engineering + Applications.

[22]  Vince D. Calhoun,et al.  Multimodal Data Fusion Using Source Separation: Two Effective Models Based on ICA and IVA and Their Properties , 2015, Proceedings of the IEEE.

[23]  Eric Moreau,et al.  New Jacobi-like algorithms for non-orthogonal joint diagonalization of Hermitian matrices , 2016, Signal Process..

[24]  Eric Moreau,et al.  A Coordinate Descent Algorithm for Complex Joint Diagonalization Under Hermitian and Transpose Congruences , 2014, IEEE Transactions on Signal Processing.

[25]  Jifei Miao,et al.  Approximate Joint Singular Value Decomposition Algorithm Based on Givens-Like Rotation , 2018, IEEE Signal Processing Letters.

[26]  Karim Abed-Meraim,et al.  A new Jacobi-like method for joint diagonalization of arbitrary non-defective matrices , 2009, Appl. Math. Comput..

[27]  Andrzej Cichocki,et al.  Numerical CP decomposition of some difficult tensors , 2016, J. Comput. Appl. Math..

[28]  Eric Moreau,et al.  Jacobi like algorithm for non-orthogonal joint diagonalization of hermitian matrices , 2014, 2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[29]  Guanghui Cheng,et al.  Non-orthogonal approximate joint diagonalization of non-Hermitian matrices in the least-squares sense , 2019, Neurocomputing.

[30]  Vince D. Calhoun,et al.  Joint Blind Source Separation by Multiset Canonical Correlation Analysis , 2009, IEEE Transactions on Signal Processing.

[31]  Andrzej Cichocki,et al.  Non-orthogonal tensor diagonalization , 2014, Signal Process..