Feedback perimeter control with online estimation of maximum throughput for an incident-affected road network

This study develops a feedback perimeter control strategy to maximize the throughput of an incident-affected network. The proposed perimeter control strategy is innovative in two aspects. First, th...

[1]  Siamak Ardekani,et al.  Urban Network-Wide Traffic Variables and Their Relations , 1987, Transp. Sci..

[2]  Rui Jiang,et al.  Perimeter control for urban traffic system based on macroscopic fundamental diagram , 2018, Physica A: Statistical Mechanics and its Applications.

[3]  Nikolaos Geroliminis,et al.  Perimeter and boundary flow control in multi-reservoir heterogeneous networks , 2013 .

[4]  Dongfang Ma,et al.  A decentralized model predictive traffic signal control method with fixed phase sequence for urban networks , 2020, J. Intell. Transp. Syst..

[5]  Markos Papageorgiou,et al.  Exploiting the fundamental diagram of urban networks for feedback-based gating , 2012 .

[6]  Fang Guo,et al.  Traffic guidance–perimeter control coupled method for the congestion in a macro network , 2017 .

[7]  Rasool Mohebifard,et al.  Cooperative traffic signal and perimeter control in semi-connected urban-street networks , 2019, Transportation Research Part C: Emerging Technologies.

[8]  Meead Saberi,et al.  Hysteresis and Capacity Drop Phenomena in Freeway Networks , 2013 .

[9]  Carlos F. Daganzo,et al.  Urban Gridlock: Macroscopic Modeling and Mitigation Approaches , 2007 .

[10]  Ling Huang,et al.  Network-wide traffic signal control based on the discovery of critical nodes and deep reinforcement learning , 2019, J. Intell. Transp. Syst..

[11]  Nikolas Geroliminis,et al.  Optimal Hybrid Perimeter and Switching Plans Control for Urban Traffic Networks , 2015, IEEE Transactions on Control Systems Technology.

[12]  Ludovic Leclercq,et al.  Macroscopic Fundamental Diagrams: A cross-comparison of estimation methods , 2014 .

[13]  Hong Kam Lo,et al.  Dynamic network traffic control , 2001 .

[14]  Markos Papageorgiou,et al.  A multivariable regulator approach to traffic-responsive network-wide signal control , 2000 .

[15]  Agachai Sumalee,et al.  Boundary conditions and behavior of the macroscopic fundamental diagram based network traffic dynamics: A control systems perspective , 2018 .

[16]  Katja Berdica,et al.  AN INTRODUCTION TO ROAD VULNERABILITY: WHAT HAS BEEN DONE, IS DONE AND SHOULD BE DONE , 2002 .

[17]  Dinesh Singh,et al.  Deep Spatio-Temporal Representation for Detection of Road Accidents Using Stacked Autoencoder , 2019, IEEE Transactions on Intelligent Transportation Systems.

[18]  Hai Le Vu,et al.  Optimizing multi-agent based urban traffic signal control system , 2018, J. Intell. Transp. Syst..

[19]  Jinde Cao,et al.  Perimeter Control of Multiregion Urban Traffic Networks With Time-Varying Delays , 2020, IEEE Transactions on Systems, Man, and Cybernetics: Systems.

[20]  Nikolaos Geroliminis,et al.  The effect of variability of urban systems characteristics in the network capacity , 2012 .

[21]  Yunpeng Wang,et al.  An identification model of critical control sub-regions based on macroscopic fundamental diagram theory , 2019, J. Intell. Transp. Syst..

[22]  Feng Chen,et al.  From Twitter to detector: real-time traffic incident detection using social media data , 2016 .

[23]  Diansheng Guo,et al.  Regionalization with dynamically constrained agglomerative clustering and partitioning (REDCAP) , 2008, Int. J. Geogr. Inf. Sci..

[24]  Eilyan Bitar,et al.  Dynamic Model for estimating the Macroscopic Fundamental Diagram , 2016 .

[25]  N. Geroliminis,et al.  A three-dimensional macroscopic fundamental diagram for mixed bi-modal urban networks , 2014 .

[26]  Nikolas Geroliminis,et al.  Multiple Concentric Gating Traffic Control in Large-Scale Urban Networks , 2015, IEEE Transactions on Intelligent Transportation Systems.

[27]  Jianmin Xu,et al.  A Perimeter Control Strategy for Oversaturated Network Preventing Queue Spillback , 2012 .

[28]  Yangsheng Jiang,et al.  A dynamic optimization method for adaptive signal control in a connected vehicle environment , 2020, J. Intell. Transp. Syst..

[29]  Yun Li,et al.  PID control system analysis, design, and technology , 2005, IEEE Transactions on Control Systems Technology.

[30]  I. Prigogine,et al.  A Two-Fluid Approach to Town Traffic , 1979, Science.

[31]  Markos Papageorgiou,et al.  Application and Evaluation of the Signal Traffic Control Strategy TUC in Chania , 2005, J. Intell. Transp. Syst..

[32]  MengChu Zhou,et al.  A Two-level Traffic Light Control Strategy for Preventing Incident-Based Urban Traffic Congestion , 2018, IEEE Transactions on Intelligent Transportation Systems.

[33]  Arjan van der Schaft,et al.  Robust trajectory tracking for incrementally passive nonlinear systems , 2019, Autom..

[34]  Hossein Hashemi,et al.  End‐to‐End Deep Learning Methodology for Real‐Time Traffic Network Management , 2018, Comput. Aided Civ. Infrastructure Eng..

[35]  Nikolaos Geroliminis,et al.  On the spatial partitioning of urban transportation networks , 2012 .

[36]  Xiang Li,et al.  Multi-objective optimal predictive control of signals in urban traffic network , 2019, J. Intell. Transp. Syst..

[37]  Markos Papageorgiou,et al.  A Simplified Estimation Scheme for the Number of Vehicles in Signalized Links , 2010, IEEE Transactions on Intelligent Transportation Systems.

[38]  Alberto Bemporad,et al.  Observability and controllability of piecewise affine and hybrid systems , 2000, IEEE Trans. Autom. Control..

[39]  P. Wagner,et al.  Metastable states in a microscopic model of traffic flow , 1997 .

[40]  Victor L. Knoop,et al.  Traffic-responsive signals combined with perimeter control: investigating the benefits , 2019, Transportmetrica B: Transport Dynamics.

[41]  Peter Nijkamp,et al.  Urban traffic incident management in a digital society. An actor-network approach in information technology use in urban Europe , 2014 .

[42]  Hyoshin Park,et al.  Real-time prediction of secondary incident occurrences using vehicle probe data , 2016 .

[43]  Pitu B. Mirchandani,et al.  A REAL-TIME TRAFFIC SIGNAL CONTROL SYSTEM: ARCHITECTURE, ALGORITHMS, AND ANALYSIS , 2001 .

[44]  Jack Haddad,et al.  Robust perimeter control design for an urban region , 2014 .

[45]  Nikolas Geroliminis,et al.  Economic Model Predictive Control of Large-Scale Urban Road Networks via Perimeter Control and Regional Route Guidance , 2018, IEEE Transactions on Intelligent Transportation Systems.

[46]  João P. Hespanha,et al.  Trajectory-Tracking and Path-Following of Underactuated Autonomous Vehicles With Parametric Modeling Uncertainty , 2007, IEEE Transactions on Automatic Control.

[47]  Markos Papageorgiou,et al.  Urban congestion gating control based on reduced operational network fundamental diagrams , 2013 .

[48]  António E. Ruano,et al.  Non-invasive modelling of ultrasound-induced temperature in tissues: a b-splines neural network solution , 2016 .

[49]  Wang,et al.  Review of road traffic control strategies , 2003, Proceedings of the IEEE.

[50]  Vikash V. Gayah,et al.  Clockwise Hysteresis Loops in the Macroscopic Fundamental Diagram , 2010 .

[51]  Lele Zhang,et al.  A comparative study of Macroscopic Fundamental Diagrams of arterial road networks governed by adaptive traffic signal systems , 2011, 1112.3761.

[52]  Alexander Paz,et al.  Behavior-consistent real-time traffic routing under information provision , 2009 .

[53]  Nikolas Geroliminis,et al.  Optimal Perimeter Control for Two Urban Regions With Macroscopic Fundamental Diagrams: A Model Predictive Approach , 2013, IEEE Transactions on Intelligent Transportation Systems.

[54]  Jorge A. Laval,et al.  Macroscopic urban dynamics: Analytical and numerical comparisons of existing models , 2017 .

[55]  Nikolaos Geroliminis,et al.  Enhancing model-based feedback perimeter control with data-driven online adaptive optimization , 2017 .

[56]  MATTHEW G. KARLAFTIS,et al.  ITS Impacts on Safety and Traffic Management: An Investigation of Secondary Crash Causes , 1999, J. Intell. Transp. Syst..

[57]  Nikolas Geroliminis,et al.  Dynamics of heterogeneity in urban networks: aggregated traffic modeling and hierarchical control , 2015 .

[58]  Arjan van der Schaft,et al.  Dynamics and control of a class of underactuated mechanical systems , 1999, IEEE Trans. Autom. Control..

[59]  Nikolas Geroliminis,et al.  Macroscopic modelling and robust control of bi-modal multi-region urban road networks , 2017 .

[60]  Bart De Schutter,et al.  Efficient network-wide model-based predictive control for urban traffic networks , 2012 .

[61]  Markos Papageorgiou,et al.  A rolling-horizon quadratic-programming approach to the signal control problem in large-scale conges , 2009 .

[62]  Genevieve Giuliano,et al.  SECONDARY ACCIDENT RATES ON LOS ANGELES FREEWAYS , 2004 .

[63]  Jack Haddad,et al.  Coordinated distributed adaptive perimeter control for large-scale urban road networks , 2017 .

[64]  Nikolaos Geroliminis,et al.  Properties of a well-defined Macroscopic Fundamental Diagram for urban traffic , 2011 .

[65]  T. Nagatani The physics of traffic jams , 2002 .

[66]  Nikolas Geroliminis,et al.  Cooperative traffic control of a mixed network with two urban regions and a freeway , 2013 .

[67]  Nikolaos Geroliminis,et al.  On the stability of traffic perimeter control in two-region urban cities , 2012 .

[68]  Alexander Paz,et al.  On-line calibration of behavior parameters for behavior-consistent route guidance , 2009 .

[69]  Zhengfei Zheng,et al.  Adaptive perimeter control for multi-region accumulation-based models with state delays , 2020 .

[70]  Nikolaos Geroliminis,et al.  Clustering of Heterogeneous Networks with Directional Flows Based on “Snake” Similarities , 2016 .

[71]  Michael D Fontaine,et al.  Operational performance evaluation of adaptive traffic control systems: A Bayesian modeling approach using real-world GPS and private sector PROBE data , 2020, J. Intell. Transp. Syst..

[72]  Jack Haddad Optimal perimeter control synthesis for two urban regions with aggregate boundary queue dynamics , 2017 .