The Maximum Transient Resonance Response of Rotating Blades With Regard to Centrifugal Force and Non-Linear Damping Effects

During the operation process in many types of fluid flow machines the rotating blades pass through various resonances e.g. during run-up or run-down or other transient conditions. Therefore, for the high cycle fatigue problem of the blades it might be important to consider the transient vibratory response of the blades during these passages through resonance and to get knowledge about the occuring maximum vibratory stresses.In the paper, approximate formulas are presented which allow the estimation of the maximum transient response of the blades. Thereby, the influence of the change of the natural frequencies due to the increasing or decreasing centrifugal force field during the run-up or run-down, respectively, is taken into consideration. Basically, the approximate formulas are based on a linear change of the natural frequencies versus time and on a linear viscous type of damping. Extensions to account for parabolic changes which are more realistic for centrifugal effects and for non-linear damping models e.g. friction damping or turbulence damping are discussed.Copyright © 1997 by ASME