Algorithms for computing triangular decomposition of polynomial systems

We discuss algorithmic advances which have extended the pioneer work of Wu on triangular decompositions. We start with an overview of the key ideas which have led to either better implementation techniques or a better understanding of the underlying theory. We then present new techniques that we regard as essential to the recent success and for future research directions in the development of triangular decomposition methods.

[1]  Changbo Chen,et al.  Algorithms for computing triangular decompositions of polynomial systems , 2011, ISSAC '11.

[2]  Wu Wentsun,et al.  MEMORY OF MY FIRST RESEARCH TEACHER: THE GREAT GEOMETER CHERN SHIING-SHEN , 2006 .

[3]  Changbo Chen,et al.  Solving semi-algebraic systems with the RegularChains library in Maple , 2011 .

[4]  Bican Xia,et al.  A complete algorithm for automated discovering of a class of inequality-type theorems , 2001, Science in China Series F Information Sciences.

[5]  Wenjun Wu,et al.  Basic principles of mechanical theorem proving in elementary geometries , 1986, Journal of Automated Reasoning.

[6]  E. Lasker,et al.  Zur Theorie der moduln und Ideale , 1905 .

[7]  Grégoire Lecerf,et al.  Computing the equidimensional decomposition of an algebraic closed set by means of lifting fibers , 2003, J. Complex..

[8]  Allan K. Steel,et al.  Conquering inseparability: Primary decomposition and multivariate factorization over algebraic function fields of positive characteristic , 2005, J. Symb. Comput..

[9]  W. Wu ON ZEROS OF ALGEBRAIC EQUATIONS——AN APPLICATION OF RITT PRINCIPLE , 1986 .

[10]  Xiao-Shan Gao,et al.  Computations with parametric equations , 1991, ISSAC '91.

[11]  Dongming Wang,et al.  An Elimination Method for Polynomial Systems , 1993, J. Symb. Comput..

[12]  Xiao-Shan Gao,et al.  A Zero Structure Theorem for Differential Parametric Systems , 1993, J. Symb. Comput..

[13]  Jan Verschelde,et al.  Solving Polynomial Systems Equation by Equation , 2008 .

[14]  Michael Kalkbrener,et al.  Algorithmic Properties of Polynomial Rings , 1998, J. Symb. Comput..

[15]  Joris van der Hoeven,et al.  Characteristic set method for differential-difference polynomial systems , 2009, J. Symb. Comput..

[16]  Michael Kalkbrener,et al.  A Generalized Euclidean Algorithm for Computing Triangular Representations of Algebraic Varieties , 1993, J. Symb. Comput..

[17]  Changbo Chen,et al.  Computing cylindrical algebraic decomposition via triangular decomposition , 2009, ISSAC '09.

[18]  Xiao-Shan Gao,et al.  Solving parametric algebraic systems , 1992, ISSAC '92.

[19]  Evelyne Hubert,et al.  Factorization-free Decomposition Algorithms in Differential Algebra , 2000, J. Symb. Comput..

[20]  Lionel Ducos Optimizations of the subresultant algorithm , 2000 .

[21]  David A. Cox,et al.  Using Algebraic Geometry , 1998 .

[22]  Marc Moreno Maza,et al.  Computations modulo regular chains , 2009, ISSAC '09.

[23]  Yang Lu Searching dependency between algebraic equations: an algorithm applied to automated reasoning , 1994 .

[24]  Kazuhiro Yokoyama,et al.  Localization and Primary Decomposition of Polynomial Ideals , 1996, J. Symb. Comput..

[25]  Éric Schost,et al.  Bit-size estimates for triangular sets in positive dimension , 2010, J. Complex..

[26]  M. M. Maza,et al.  Well known theorems on triangular systems and the D5 principle , 2006 .

[27]  François Boulier,et al.  Representation for the radical of a finitely generated differential ideal , 1995, ISSAC '95.

[28]  Marc Moreno Maza,et al.  Lifting techniques for triangular decompositions , 2005, ISSAC.

[29]  Daniel Lazard,et al.  A new method for solving algebraic systems of positive dimension , 1991, Discret. Appl. Math..

[30]  Changbo Chen,et al.  Triangular decomposition of semi-algebraic systems , 2010, J. Symb. Comput..

[31]  Dominique Duval,et al.  About a New Method for Computing in Algebraic Number Fields , 1985, European Conference on Computer Algebra.

[32]  Bud Mishra,et al.  Algorithmic Algebra , 1993, Texts and Monographs in Computer Science.

[33]  Deepak Kapur,et al.  Automated Geometric Reasoning: Dixon Resultants, Gröbner Bases, and Characteristic Sets , 1996, Automated Deduction in Geometry.

[34]  Wu Wen-tsun ON THE FOUNDATION OF ALGEBRAIC DIFFERENTIAL GEOMETRY , 2008 .

[35]  Marc Moreno Maza,et al.  On the Theories of Triangular Sets , 1999, J. Symb. Comput..

[36]  Dongming Wang,et al.  Decomposing Polynomial Systems into Simple Systems , 1998, J. Symb. Comput..

[37]  M. M. Maza On Triangular Decompositions of Algebraic Varieties , 2000 .

[38]  Marc Moreno Maza,et al.  Polynomial Gcd Computations over Towers of Algebraic Extensions , 1995, AAECC.

[39]  Wen-tsün Wu,et al.  On the Generic Zero and Chow Basis of an Irreducible Ascending Set , 2008 .

[40]  Marc Moreno Maza,et al.  Fast arithmetic for triangular sets: from theory to practice , 2007, ISSAC '07.

[41]  Emmy Noether Idealtheorie in Ringbereichen , 1921 .

[42]  Changbo Chen,et al.  Comprehensive Triangular Decomposition , 2007, CASC.