On the complexity of model checking interval-valued discrete time Markov chains

We investigate the complexity of model checking (finite) interval-valued discrete time Markov chains, that is, discrete time Markov chains where each transition is associated with an interval in which the actual transition probability must lie. Two semantics are considered, the uncertain Markov chain (UMC) semantics and the interval Markov decision process (IMDP) semantics. We show that, for reachability, these two semantics coincide and the problem is P-complete. This entails that PCTL model checking problem under the IMDP semantics is also P-complete. We also show that model checking PCTL under the UMC semantics is Square-Root-Sum hard, meaning that one can reduce the Square-Root-Sum problem to it.

[1]  Alexander Schrijver,et al.  Theory of linear and integer programming , 1986, Wiley-Interscience series in discrete mathematics and optimization.

[2]  Laurent El Ghaoui,et al.  Robust Control of Markov Decision Processes with Uncertain Transition Matrices , 2005, Oper. Res..

[3]  Richard M. Karp,et al.  On linear characterizations of combinatorial optimization problems , 1980, 21st Annual Symposium on Foundations of Computer Science (sfcs 1980).

[4]  Peter Bro Miltersen,et al.  2 The Task of a Numerical Analyst , 2022 .

[5]  Robert Givan,et al.  Bounded-parameter Markov decision processes , 2000, Artif. Intell..

[6]  Krishnendu Chatterjee,et al.  Model-Checking omega-Regular Properties of Interval Markov Chains , 2008, FoSSaCS.

[7]  Pravin M. Vaidya,et al.  A new algorithm for minimizing convex functions over convex sets , 1996, Math. Program..

[8]  Lev V. Utkin,et al.  Interval-Valued Finite Markov Chains , 2002, Reliab. Comput..

[9]  Kim Guldstrand Larsen,et al.  Specification and refinement of probabilistic processes , 1991, [1991] Proceedings Sixth Annual IEEE Symposium on Logic in Computer Science.

[10]  Kim G. Larsen,et al.  Consistency and refinement for Interval Markov Chains , 2012, J. Log. Algebraic Methods Program..

[11]  Tomás Brázdil,et al.  Stochastic games with branching-time winning objectives , 2006, 21st Annual IEEE Symposium on Logic in Computer Science (LICS'06).

[12]  Martin L. Puterman,et al.  Markov Decision Processes: Discrete Stochastic Dynamic Programming , 1994 .

[13]  Bengt Jonsson,et al.  A logic for reasoning about time and reliability , 1990, Formal Aspects of Computing.

[14]  Joost-Pieter Katoen,et al.  Three-valued abstraction for probabilistic systems , 2012, J. Log. Algebraic Methods Program..

[15]  Christel Baier,et al.  Principles of model checking , 2008 .

[16]  Kim G. Larsen,et al.  Constraint Markov Chains , 2011, Theor. Comput. Sci..

[17]  Kousha Etessami,et al.  Recursive Markov chains, stochastic grammars, and monotone systems of nonlinear equations , 2005, JACM.

[18]  Christel Baier,et al.  Principles of Model Checking (Representation and Mind Series) , 2008 .

[19]  Mahesh Viswanathan,et al.  Model-Checking Markov Chains in the Presence of Uncertainties , 2006, TACAS.

[20]  Ashutosh Trivedi,et al.  Playing Stochastic Games Precisely , 2012, CONCUR.

[21]  H. P. Williams THEORY OF LINEAR AND INTEGER PROGRAMMING (Wiley-Interscience Series in Discrete Mathematics and Optimization) , 1989 .

[22]  Andrea Bianco,et al.  Model Checking of Probabalistic and Nondeterministic Systems , 1995, FSTTCS.

[23]  Martin Grötschel,et al.  The ellipsoid method and its consequences in combinatorial optimization , 1981, Comb..

[24]  Martin Leucker,et al.  Don't Know in Probabilistic Systems , 2006, SPIN.

[25]  Shie Mannor,et al.  Distributionally Robust Markov Decision Processes , 2010, Math. Oper. Res..

[26]  John N. Tsitsiklis,et al.  The Complexity of Markov Decision Processes , 1987, Math. Oper. Res..

[27]  Santosh S. Vempala,et al.  Solving convex programs by random walks , 2002, STOC '02.