Linear, planar, and tubular molecular structures constructed by double planar tetracoordinate carbon D2h C2(BeH)4 species via hydrogen‐bridged BeH2Be bonds

This computational study identifies the rhombic D2h C2(BeH)4 (2a) to be a species featuring double planar tetracoordinate carbons (ptCs). Aromaticity and the peripheral BeBeBeBe bonding around CC core contribute to the stabilization of the ptC structure. Although the ptC structure is not a global minimum, its high kinetic stability and its distinct feature of having a bonded C2 core from having two separated carbon atoms in the global minimum and other low‐lying minima could make the ptC structure to be preferred if the carbon source is dominated by C2 species. The electron deficiency of the BeH group allows the ptC species to serve as building blocks to construct large/nanostructures, such as linear chains, planar sheets, and tubes, via intermolecular hydrogen‐bridged bonds (HBBs). Formation of one HBB bond releases more than 30.0 kcal/mol of energy, implying the highly exothermic formation processes and the possibility to synthesize these nano‐size structures. © 2015 Wiley Periodicals, Inc.

[1]  Si‐Dian Li,et al.  M4H4X: hydrometals (M=Cu, Ni) containing tetracoordinate planar nonmetals (X=B, C, N, O). , 2004, Angewandte Chemie.

[2]  P. Schleyer,et al.  A new strategy to achieve perfectly planar carbon tetracoordination. , 2001 .

[3]  E. Ganz,et al.  Two-dimensional Cu2Si monolayer with planar hexacoordinate copper and silicon bonding. , 2015, Journal of the American Chemical Society.

[4]  M. Méndez-Rojas,et al.  (C5M2-n)(n-) (M = Li, Na, K, and n = 0, 1, 2). A new family of molecules containing planar tetracoordinate carbons. , 2003, Journal of the American Chemical Society.

[5]  P. Schleyer,et al.  Planar pentacoordinate carbon in CAl5(+): a global minimum. , 2008, Journal of the American Chemical Society.

[6]  P. Schleyer,et al.  Boron rings enclosing planar hypercoordinate group 14 elements. , 2007, Journal of the American Chemical Society.

[7]  X. Zeng,et al.  Edge decorated SiC nanoribbons with metal: Coexistence of planar tetracoordinate carbon and silicon , 2013 .

[8]  Yan-Bo Wu,et al.  Computationally designed families of flat, tubular, and cage molecules assembled with "starbenzene" building blocks through hydrogen-bridge bonds. , 2010, Chemistry.

[9]  Paul von Ragué Schleyer,et al.  Nucleus-Independent Chemical Shifts:  A Simple and Efficient Aromaticity Probe. , 1996, Journal of the American Chemical Society.

[10]  Yi‐hong Ding,et al.  The Si-doped planar tetracoordinate carbon (ptC) unit CAl3Si− could be used as a building block or inorganic ligand during cluster-assembly , 2008 .

[11]  Roald Hoffmann,et al.  Planar tetracoordinate carbon , 1970 .

[12]  Zhi‐Xiang Wang,et al.  Construction Principles of "Hyparenes": Families of Molecules with Planar Pentacoordinate Carbons , 2001, Science.

[13]  T. Heine,et al.  What is the maximum coordination number in a planar structure? , 2012, Angewandte Chemie.

[14]  Paul von Ragué Schleyer,et al.  Al₂C monolayer: the planar tetracoordinate carbon global minimum. , 2014, Nanoscale.

[15]  G. Erker,et al.  Compounds Containing Planar‐Tetracoordinate Carbon , 1997 .

[16]  Grant D. Geske,et al.  Ab initio structure of the (Na(2)[CAl(4)])(2) dimer. Next step toward solid materials containing tetracoordinate planar carbon. , 2002, Inorganic chemistry.

[17]  Zhongfang Chen,et al.  SiC2 silagraphene and its one-dimensional derivatives: where planar tetracoordinate silicon happens. , 2011, Journal of the American Chemical Society.

[18]  R. Keese,et al.  Carbon flatland: planar tetracoordinate carbon and fenestranes. , 2006, Chemical reviews.

[19]  Alexander I Boldyrev,et al.  Aromatic metal-centered monocyclic boron rings: Co©B8- and Ru©B9-. , 2011, Angewandte Chemie.

[20]  Yi‐hong Ding,et al.  Beryllium and boron decoration forms planar tetracoordinate carbon strips at the edge of graphene nanoribbons. , 2011, Physical chemistry chemical physics : PCCP.

[21]  T. Heine,et al.  CAl4Be and CAl3Be2(-): global minima with a planar pentacoordinate carbon atom. , 2010, Chemical communications.

[22]  P. Schleyer,et al.  Planar and inherently non-tetrahedral tetracoordinate carbon: a status report * , 1995 .

[23]  Stabilization of planar tetracoordinate carbon , 1976 .

[24]  Yi‐hong Ding,et al.  Design of sandwichlike complexes based on the planar tetracoordinate carbon unit CAl4(2-). , 2007, Journal of the American Chemical Society.

[25]  Martin R. Saunders,et al.  Stochastic search for isomers on a quantum mechanical surface , 2004, J. Comput. Chem..

[26]  Thomas Heine,et al.  Recent advances in planar tetracoordinate carbon chemistry , 2007, J. Comput. Chem..

[27]  Yan-Bo Wu,et al.  Design of Molecular Chains Based on the Planar Tetracoordinate Carbon Unit C2Al4 , 2011 .

[28]  T. Keith,et al.  A comparison of models for calculating nuclear magnetic resonance shielding tensors , 1996 .

[29]  L. Radom,et al.  The planar carbon story , 1998 .

[30]  Mark Saeys,et al.  Origin of extraordinary stability of square-planar carbon atoms in surface carbides of cobalt and nickel. , 2015, Angewandte Chemie.

[31]  R. Hoffmann,et al.  Planar tetracoordinate carbon in extended systems. , 2004, Journal of the American Chemical Society.

[32]  Hai‐feng Zhang,et al.  Pentaatomic Tetracoordinate Planar Carbon, [CAl4]2−: A New Structural Unit and Its Salt Complexes , 2000 .

[33]  L. Curtiss,et al.  Intermolecular interactions from a natural bond orbital, donor-acceptor viewpoint , 1988 .

[34]  Xiaojun Wu,et al.  Predicting two-dimensional boron-carbon compounds by the global optimization method. , 2011, Journal of the American Chemical Society.

[35]  Yi‐hong Ding,et al.  CSi2Ga2: a neutral planar tetracoordinate carbon (ptC) building block , 2009, Journal of molecular modeling.

[36]  Yi‐hong Ding,et al.  Planar carbon radical's assembly and stabilization, a way to design spin-based molecular materials. , 2007, Physical chemistry chemical physics : PCCP.

[37]  Yan-Bo Wu,et al.  D3h CN3Be3+ and CO3Li3+: viable planar hexacoordinate carbon prototypes. , 2012, Physical chemistry chemical physics : PCCP.

[38]  Yan-Bo Wu,et al.  Computational design of linear, flat, and tubular nanomolecules using planar tetracoordinate carbon C2Al4 units , 2012 .

[39]  Z. Cao,et al.  Novel Beltlike and Tubular Structures of Boron and Carbon Clusters Containing the Planar Tetracoordinate Carbon: A Theoretical Study of (C3B2)nH4 (n = 2−6) and (C3B2)n (n = 4−8) , 2008 .

[40]  Kelling J. Donald,et al.  CBe5E- (E = Al, Ga, In, Tl): planar pentacoordinate carbon in heptaatomic clusters. , 2012, Physical chemistry chemical physics : PCCP.

[41]  Si‐Dian Li,et al.  M5H5X (M = Ag, Au, Pd, Pt; X = Si, Ge, P, S): hydrometal pentagons with D5h planar pentacoordinate nonmetal centers. , 2005, The journal of physical chemistry. A.

[42]  X. Zeng,et al.  Planar tetracoordinate carbon strips in edge decorated graphene nanoribbon. , 2010, Journal of the American Chemical Society.

[43]  P. Schleyer,et al.  A new, general strategy for achieving planar tetracoordinate geometries for carbon and other second row periodic elements , 1991 .

[44]  Z. Cao,et al.  Zigzag boron-carbon nanotubes with quasi-planar tetracoordinate carbons. , 2008, Journal of the American Chemical Society.

[45]  H. Monkhorst Activation energy for interconversion of enantiomers containing an asymmetric carbon atom without breaking bonds , 1968 .

[46]  X. Zeng,et al.  Tri-Wing Graphene Nano-Paddle-Wheel with a Single-File Metal Joint: Formation of Multi-Planar Tetracoordinated-Carbon (ptC) Strips , 2012 .

[47]  Zhongfang Chen,et al.  A bifunctional strategy towards experimentally (synthetically) attainable molecules with planar tetracoordinate carbons. , 2010, Physical chemistry chemical physics : PCCP.

[48]  Yan-Bo Wu,et al.  Simplest neutral singlet C2E4 (E = Al, Ga, In, and Tl) global minima with double planar tetracoordinate carbons: equivalence of C2 moieties in C2E4 to carbon centers in CAl4(2-) and CAl5(+). , 2009, The journal of physical chemistry. A.

[49]  Wanlin Guo,et al.  Two-dimensional tetragonal TiC monolayer sheet and nanoribbons. , 2012, Journal of the American Chemical Society.

[50]  Clémence Corminboeuf,et al.  Nucleus-independent chemical shifts (NICS) as an aromaticity criterion. , 2005, Chemical reviews.

[51]  Xiaojun Wu,et al.  AlxC Monolayer Sheets: Two-Dimensional Networks with Planar Tetracoordinate Carbon and Potential Applications as Donor Materials in Solar Cell. , 2014, Journal of Physical Chemistry Letters.

[52]  Zhongfang Chen,et al.  Be(2)C monolayer with quasi-planar hexacoordinate carbons: a global minimum structure. , 2014, Angewandte Chemie.

[53]  Alexander I Boldyrev,et al.  Transition-metal-centered monocyclic boron wheel clusters (M©Bn): a new class of aromatic borometallic compounds. , 2013, Accounts of chemical research.

[54]  K. Exner,et al.  Planar hexacoordinate carbon: a viable possibility. , 2000, Science.

[55]  Kelling J. Donald,et al.  Plane and simple: planar tetracoordinate carbon centers in small molecules. , 2012, Physical chemistry chemical physics : PCCP.

[56]  P. Schleyer,et al.  Planar hepta-, octa-, nona-, and decacoordinate first row d-block metals enclosed by boron rings. , 2009, Inorganic chemistry.

[57]  P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .

[58]  Yi‐hong Ding,et al.  Beryllium decorated armchair boron nitride nanoribbon: A new planar tetracoordinate nitride containing system with enhanced conductivity , 2014 .

[59]  Wei Chen,et al.  Ab initio classical trajectories on the Born–Oppenheimer surface: Hessian-based integrators using fifth-order polynomial and rational function fits , 1999 .

[60]  Jing Xu,et al.  Pentaatomic planar tetracoordinate silicon with 14 valence electrons: A large‐scale global search of SiXnYmq (n + m = 4; q = 0, ±1, −2; X, Y = main group elements from H to Br) , 2015, J. Comput. Chem..

[61]  Xiaojun Wu,et al.  B2C graphene, nanotubes, and nanoribbons. , 2009, Nano letters.