Abusing the Tutte Matrix: An Algebraic Instance Compression for the K-set-cycle Problem

We give an algebraic, determinant-based algorithm for the K-Cycle problem, i.e., the problem of finding a cycle through a set of specified elements. Our approach gives a simple FPT algorithm for the problem, matching the O^*(2^|K|) running time of the algorithm of Bjorklund et al. (SODA, 2012). Furthermore, our approach is open for treatment by classical algebraic tools (e.g., Gaussian elimination), and we show that it leads to a polynomial compression of the problem, i.e., a polynomial-time reduction of the K-Cycle problem into an algebraic problem with coding size O(|K|^3). This is surprising, as several related problems (e.g., k-Cycle and the Disjoint Paths problem) are known not to admit such a reduction unless the polynomial hierarchy collapses. Furthermore, despite the result, we are not aware of any witness for the K-Cycle problem of size polynomial in |K|+ log n, which seems (for now) to separate the notions of polynomial compression and polynomial kernelization (as a polynomial kernelization for a problem in NP necessarily implies a small witness).

[1]  Xi Wu,et al.  Weak compositions and their applications to polynomial lower bounds for kernelization , 2012, SODA.

[2]  Stefan Kratsch,et al.  Cross-Composition: A New Technique for Kernelization Lower Bounds , 2011, STACS.

[3]  Neil Robertson,et al.  Graph Minors .XIII. The Disjoint Paths Problem , 1995, J. Comb. Theory B.

[4]  László Lovász,et al.  On determinants, matchings, and random algorithms , 1979, FCT.

[5]  James F. Geelen,et al.  An Algebraic Matching Algorithm , 2000, Comb..

[6]  Leslie E. Trotter,et al.  Vertex packings: Structural properties and algorithms , 1975, Math. Program..

[7]  Andreas Björklund Determinant Sums for Undirected Hamiltonicity , 2014, SIAM J. Comput..

[8]  Ioannis Koutis,et al.  Faster Algebraic Algorithms for Path and Packing Problems , 2008, ICALP.

[9]  Andreas Bjorklund,et al.  Exact Covers via Determinants , 2009, 0910.0460.

[10]  Saket Saurabh,et al.  Incompressibility through Colors and IDs , 2009, ICALP.

[11]  Bruce A. Reed,et al.  The disjoint paths problem in quadratic time , 2012, J. Comb. Theory, Ser. B.

[12]  B. Mohar,et al.  Graph Minors , 2009 .

[13]  Richard Zippel,et al.  Probabilistic algorithms for sparse polynomials , 1979, EUROSAM.

[14]  Noga Alon,et al.  Color-coding , 1995, JACM.

[15]  Piotr Sankowski,et al.  Maximum matchings via Gaussian elimination , 2004, 45th Annual IEEE Symposium on Foundations of Computer Science.

[16]  Andrew Drucker New Limits to Classical and Quantum Instance Compression , 2015, SIAM J. Comput..

[17]  Noga Alon,et al.  Solving MAX-r-SAT Above a Tight Lower Bound , 2010, SODA.

[18]  Lance Fortnow,et al.  Infeasibility of instance compression and succinct PCPs for NP , 2007, J. Comput. Syst. Sci..

[19]  Jacob T. Schwartz,et al.  Fast Probabilistic Algorithms for Verification of Polynomial Identities , 1980, J. ACM.

[20]  Jörg Flum,et al.  Parameterized Complexity Theory , 2006, Texts in Theoretical Computer Science. An EATCS Series.

[21]  Daniel Lokshtanov,et al.  Saving space by algebraization , 2010, STOC '10.

[22]  Ken-ichi Kawarabayashi,et al.  An Improved Algorithm for Finding Cycles Through Elements , 2008, IPCO.

[23]  A. J. Stothers On the complexity of matrix multiplication , 2010 .

[24]  Ryan Williams,et al.  Finding paths of length k in O*(2k) time , 2008, Inf. Process. Lett..

[25]  Virginia Vassilevska Williams,et al.  Multiplying matrices faster than coppersmith-winograd , 2012, STOC '12.

[26]  Dániel Marx,et al.  The Multivariate Algorithmic Revolution and Beyond: essays dedicated to Michael R. Fellows on the occasion of His 60th birthday , 2012 .

[27]  Michal Pilipczuk,et al.  Solving Connectivity Problems Parameterized by Treewidth in Single Exponential Time , 2011, 2011 IEEE 52nd Annual Symposium on Foundations of Computer Science.

[28]  Dimitrios M. Thilikos,et al.  Bidimensionality and kernels , 2010, SODA '10.

[29]  Silvio Micali,et al.  An O(v|v| c |E|) algoithm for finding maximum matching in general graphs , 1980, 21st Annual Symposium on Foundations of Computer Science (sfcs 1980).

[30]  Michael R. Fellows,et al.  On problems without polynomial kernels , 2009, J. Comput. Syst. Sci..

[31]  Dimitrios M. Thilikos,et al.  (Meta) Kernelization , 2009, 2009 50th Annual IEEE Symposium on Foundations of Computer Science.

[32]  Ge Xia,et al.  Improved upper bounds for vertex cover , 2010, Theor. Comput. Sci..

[33]  Noga Alon,et al.  Solving MAX-r-SAT Above a Tight Lower Bound , 2009, SODA '10.

[34]  Michael R. Fellows,et al.  Parameterized Complexity , 1998 .

[35]  Dieter van Melkebeek,et al.  Satisfiability allows no nontrivial sparsification unless the polynomial-time hierarchy collapses , 2010, STOC '10.

[36]  Michal Pilipczuk,et al.  Clique Cover and Graph Separation: New Incompressibility Results , 2011, TOCT.

[37]  Stefan Kratsch,et al.  Compression via Matroids: A Randomized Polynomial Kernel for Odd Cycle Transversal , 2011, TALG.

[38]  Anders Yeo,et al.  Kernel Bounds for Disjoint Cycles and Disjoint Paths , 2009, ESA.

[39]  Stefan Kratsch,et al.  Representative Sets and Irrelevant Vertices: New Tools for Kernelization , 2011, 2012 IEEE 53rd Annual Symposium on Foundations of Computer Science.

[40]  Dániel Marx,et al.  Kernelization of packing problems , 2012, SODA.

[41]  Andreas Björklund,et al.  Shortest cycle through specified elements , 2012, SODA.

[42]  Shimon Even,et al.  An O (N2.5) algorithm for maximum matching in general graphs , 1975, 16th Annual Symposium on Foundations of Computer Science (sfcs 1975).

[43]  Don Coppersmith,et al.  Matrix multiplication via arithmetic progressions , 1987, STOC.

[44]  W. T. Tutte The Factorization of Linear Graphs , 1947 .

[45]  Stéphan Thomassé,et al.  A 4k2 kernel for feedback vertex set , 2010, TALG.