Improved Bounds for Planar k -Sets and Related Problems

Abstract. We prove an O(n(k+1)1/3) upper bound for planar k -sets. This is the first considerable improvement on this bound after its early solution approximately 27 years ago. Our proof technique also applies to improve the current bounds on the combinatorial complexities of k -levels in the arrangement of line segments, k convex polygons in the union of n lines, parametric minimum spanning trees, and parametric matroids in general. <lsiheader> <onlinepub>26 June, 1998 <editor>Editors-in-Chief: &lsilt;a href=../edboard.html#chiefs&lsigt;Jacob E. Goodman, Richard Pollack&lsilt;/a&lsigt; <pdfname>19n3p373.pdf <pdfexist>yes <htmlexist>no <htmlfexist>no <texexist>yes <sectionname> </lsiheader>

[1]  Noga Alon,et al.  Point Selections and Weak ε-Nets for Convex Hulls , 1992, Combinatorics, Probability and Computing.

[2]  David Eppstein Geometric Lower Bounds for Parametric Matroid Optimization , 1998, Discret. Comput. Geom..

[3]  Herbert Edelsbrunner,et al.  Cutting dense point sets in half , 1997, Discret. Comput. Geom..

[4]  Tamal K. Dey,et al.  On the Number of Simplicial Complexes in D , 1997, Comput. Geom..

[5]  Bernard Chazelle,et al.  Halfspace range search: An algorithmic application ofk-sets , 1986, Discret. Comput. Geom..

[6]  Tamal K. Dey On Counting Triangulations in D Dimensions , 1993, Comput. Geom..

[7]  Micha Sharir,et al.  On levels in arrangements of lines, segments, planes, and triangles , 1997, SCG '97.

[8]  J. Pach,et al.  An upper bound on the number of planar k-sets , 1989, 30th Annual Symposium on Foundations of Computer Science.

[9]  Zoltán Füredi,et al.  On the number of halving planes , 1989, SCG '89.

[10]  John Hershberger,et al.  Convex Polygons Made from Few Lines and Convex Decompositions of Polyhedra , 1992, SWAT.

[11]  János Pach,et al.  Extremal Problems for Geometric Hypergraphs , 1996, ISAAC.

[12]  László A. Székely,et al.  Crossing Numbers and Hard Erdős Problems in Discrete Geometry , 1997, Combinatorics, Probability and Computing.

[13]  Leonidas J. Guibas,et al.  Combinatorial complexity bounds for arrangements of curves and spheres , 1990, Discret. Comput. Geom..

[14]  Leonidas J. Guibas,et al.  Points and triangles in the plane and halving planes in space , 1991, Discret. Comput. Geom..

[15]  Emo Welzl More onk-sets of finite sets in the plane , 1986, Discret. Comput. Geom..

[16]  E. Szemerédi,et al.  Crossing-Free Subgraphs , 1982 .

[17]  Bernard Chazelle,et al.  Halfspace range search: an algorithmic application of K-sets , 1985, SCG '85.

[18]  János Pach,et al.  Graphs drawn with few crossings per edge , 1997, Comb..

[19]  Imre Bárány,et al.  On the expected number of k-sets , 1994, Discret. Comput. Geom..

[20]  Herbert Edelsbrunner,et al.  On the Number of Line Separations of a Finite Set in the Plane , 1985, J. Comb. Theory, Ser. A.

[21]  P. Erdös,et al.  Dissection Graphs of Planar Point Sets , 1973 .

[22]  Micha Sharir,et al.  Onk-sets in arrangements of curves and surfaces , 1991, Discret. Comput. Geom..

[23]  Kenneth L. Clarkson,et al.  Applications of random sampling in computational geometry, II , 1988, SCG '88.

[24]  Sinisa T. Vrecica,et al.  The Colored Tverberg's Problem and Complexes of Injective Functions , 1992, J. Comb. Theory A.

[25]  Richard Cole,et al.  On k-Hulls and Related Problems , 1987, SIAM J. Comput..

[26]  Herbert Edelsbrunner,et al.  Algorithms in Combinatorial Geometry , 1987, EATCS Monographs in Theoretical Computer Science.

[27]  L. A. Oa,et al.  Crossing Numbers and Hard Erd} os Problems in Discrete Geometry , 1997 .

[28]  Kenneth L. Clarkson,et al.  Combinatorial complexity bounds for arrangements of curves and surfaces , 2015, [Proceedings 1988] 29th Annual Symposium on Foundations of Computer Science.

[29]  Noga Alon,et al.  The number of small semispaces of a finite set of points in the plane , 1986, J. Comb. Theory, Ser. A.

[30]  Herbert Edelsbrunner,et al.  Counting triangle crossings and halving planes , 1993, SCG '93.