Annotation sémantique 2D/3D d'images spatialisées pour la documentation et l'analyse d'objets patrimoniaux

Dans le domaine de l’architecture et de la conservation du patrimoine historique, les technologies de l’information et de la communication permettent l’acquisition de grandes quantites de donnees introduisant des supports d’analyses pour differentes finalites et a differents niveaux de details (photographies, nuages de points, imagerie scientifique, …). L’organisation et la structuration de ces ressources est aujourd’hui un probleme majeur pour la description, l’analyse et la comprehension d’objets patrimoniaux. Cependant les solutions existantes d’annotations semantiques d’images ou de modele 3D se revelent insuffisantes notamment sur l’aspect de mise en relation des differents supports d’analyse.Cette these propose une approche permettant de conduire des annotations sur les differents supports bidimensionnels tout en permettant la propagation de ces annotations entre les differentes representations (2D ou 3D) de l’objet. L’objectif est d’identifier des solutions pour correler (d’un point de vue spatial, temporel et semantique) des jeux d’annotations au sein d’un jeu d’images. Ainsi le systeme repose sur le principe de spatialisation des donnees permettant d’etablir une relation entre les representations 3D, integrant toute la complexite geometrique de l’objet et par consequent permettant l’extraction d’informations metriques, et les representations 2D de l’objet. L’approche cherche donc a la mise en place d’une continuite informationnelle depuis l’acquisition d’images jusqu’a la construction de representations 3D semantiquement enrichies en integrant des aspects multi-supports et multi-temporels. Ce travail a abouti a la definition et le developpement d’un ensemble de modules informatiques pouvant etre utilises par des specialistes de la conservation d’un patrimoine architectural comme par le grand public.

[1]  J. MacQueen Some methods for classification and analysis of multivariate observations , 1967 .

[2]  H. M. Karara,et al.  Direct Linear Transformation from Comparator Coordinates into Object Space Coordinates in Close-Range Photogrammetry , 2015 .

[3]  Larry D. Hostetler,et al.  The estimation of the gradient of a density function, with applications in pattern recognition , 1975, IEEE Trans. Inf. Theory.

[4]  Hans P. Moravec Towards Automatic Visual Obstacle Avoidance , 1977, IJCAI.

[5]  M. Teague Image analysis via the general theory of moments , 1980 .

[6]  Roger Y. Tsai,et al.  A versatile camera calibration technique for high-accuracy 3D machine vision metrology using off-the-shelf TV cameras and lenses , 1987, IEEE J. Robotics Autom..

[7]  Yajun Li,et al.  Reforming the theory of invariant moments for pattern recognition , 1992, Pattern Recognit..

[8]  Richard M. Leahy,et al.  An Optimal Graph Theoretic Approach to Data Clustering: Theory and Its Application to Image Segmentation , 1993, IEEE Trans. Pattern Anal. Mach. Intell..

[9]  Wolfgang Förstner,et al.  A Framework for Low Level Feature Extraction , 1994, ECCV.

[10]  Carlo Tomasi,et al.  Good features to track , 1994, 1994 Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.

[11]  Allen R. Hanson,et al.  Robust methods for estimating pose and a sensitivity analysis , 1994 .

[12]  Yihong Gong,et al.  An image database system with content capturing and fast image indexing abilities , 1994, 1994 Proceedings of IEEE International Conference on Multimedia Computing and Systems.

[13]  Emanuele Trucco,et al.  Computer and Robot Vision , 1995 .

[14]  Olaf Kübler,et al.  Complete Sets of Complex Zernike Moment Invariants and the Role of the Pseudoinvariants , 1995, IEEE Trans. Pattern Anal. Mach. Intell..

[15]  Dragutin Petkovic,et al.  Query by Image and Video Content: The QBIC System , 1995, Computer.

[16]  Luc Van Gool,et al.  Affine/ Photometric Invariants for Planar Intensity Patterns , 1996, ECCV.

[17]  Janne Heikkilä,et al.  A four-step camera calibration procedure with implicit image correction , 1997, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[18]  Craig M. Shakarji,et al.  Least-Squares Fitting Algorithms of the NIST Algorithm Testing System , 1998, Journal of research of the National Institute of Standards and Technology.

[19]  Dieter Fensel,et al.  Knowledge Engineering: Principles and Methods , 1998, Data Knowl. Eng..

[20]  Andrew W. Fitzgibbon,et al.  Automatic 3D model acquisition and generation of new images from video sequences , 1998, 9th European Signal Processing Conference (EUSIPCO 1998).

[21]  Kerry Rodden How Do People Organise Their Photographs? , 1999, BCS-IRSG Annual Colloquium on IR Research.

[22]  Y. Mori,et al.  Image-to-word transformation based on dividing and vector quantizing images with words , 1999 .

[23]  Patrick Haffner,et al.  Support vector machines for histogram-based image classification , 1999, IEEE Trans. Neural Networks.

[24]  Andrew E. Johnson,et al.  Using Spin Images for Efficient Object Recognition in Cluttered 3D Scenes , 1999, IEEE Trans. Pattern Anal. Mach. Intell..

[25]  David G. Lowe,et al.  Object recognition from local scale-invariant features , 1999, Proceedings of the Seventh IEEE International Conference on Computer Vision.

[26]  Nicolas Vandenbroucke Segmentation d'images couleur par classification de pixels dans des espaces d'attributs colorimétriques adaptés : application à l'analyse d'images de football , 2000 .

[27]  Jan Flusser,et al.  On the independence of rotation moment invariants , 2000, Pattern Recognit..

[28]  Sudeep Sarkar,et al.  Supervised Learning of Large Perceptual Organization: Graph Spectral Partitioning and Learning Automata , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[29]  Ben Shneiderman,et al.  Visualization methods for personal photo collections: browsing and searching in the PhotoFinder , 2000, 2000 IEEE International Conference on Multimedia and Expo. ICME2000. Proceedings. Latest Advances in the Fast Changing World of Multimedia (Cat. No.00TH8532).

[30]  Frederic Truchetet,et al.  Karhunen-Loeve transform applied to region- based segmentation of color aerial images , 2001 .

[31]  Dietmar Saupe,et al.  3D Model Retrieval with Spherical Harmonics and Moments , 2001, DAGM-Symposium.

[32]  W. Boehler,et al.  THE POTENTIAL OF NON-CONTACT CLOSE RANGE LASER SCANNERS FOR CULTURAL HERITAGE RECORDING , 2001 .

[33]  B. S. Manjunath,et al.  Unsupervised Segmentation of Color-Texture Regions in Images and Video , 2001, IEEE Trans. Pattern Anal. Mach. Intell..

[34]  J. Janesick,et al.  Scientific Charge-Coupled Devices , 2001 .

[35]  Wan-Chi Siu,et al.  Improved techniques for automatic image segmentation , 2001, IEEE Trans. Circuits Syst. Video Technol..

[36]  Anastasios N. Venetsanopoulos,et al.  Angular map-driven snakes with application to object shape description in color images , 2001, IEEE Trans. Image Process..

[37]  Paul A. Viola,et al.  Rapid object detection using a boosted cascade of simple features , 2001, Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001.

[38]  Benjamin B. Bederson,et al.  PhotoMesa: a zoomable image browser using quantum treemaps and bubblemaps , 2001, UIST '01.

[39]  Jan Flusser,et al.  On the inverse problem of rotation moment invariants , 2002, Pattern Recognit..

[40]  Jayanta Mukherjee MRF clustering for segmentation of color images , 2002, Pattern Recognit. Lett..

[41]  Ramakant Nevatia,et al.  Automatic pose estimation of complex 3D building models , 2002, Sixth IEEE Workshop on Applications of Computer Vision, 2002. (WACV 2002). Proceedings..

[42]  David A. Forsyth,et al.  Object Recognition as Machine Translation: Learning a Lexicon for a Fixed Image Vocabulary , 2002, ECCV.

[43]  Dorin Comaniciu,et al.  Mean Shift: A Robust Approach Toward Feature Space Analysis , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[44]  D.M. Mount,et al.  An Efficient k-Means Clustering Algorithm: Analysis and Implementation , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[45]  Jun Zhang,et al.  Novel technique for multiresolution color image segmentation , 2002 .

[46]  Roberto Cipolla,et al.  A system for automatic pose-estimation from a single image in a city scene , 2002 .

[47]  Jitendra Malik,et al.  Blobworld: Image Segmentation Using Expectation-Maximization and Its Application to Image Querying , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[48]  S. El-Hakim,et al.  Critical Factors and Configurations for Practical 3 D Image-Based Modeling , 2003 .

[49]  John R. Smith,et al.  VideoAnnEx: IBM MPEG-7 Annotation Tool for Multimedia Indexing and Concept Learning , 2003 .

[50]  Jong Bae Kim,et al.  Multiresolution-based watersheds for efficient image segmentation , 2003, Pattern Recognit. Lett..

[51]  Jean-Yves Blaise Le formalisme objet appliqué à l'étude de l'édifice patrimonial : Problèmes de modélisation et d'échanges de données sur le réseau Internet , 2003 .

[52]  Szymon Rusinkiewicz,et al.  Rotation Invariant Spherical Harmonic Representation of 3D Shape Descriptors , 2003, Symposium on Geometry Processing.

[53]  Cordelia Schmid,et al.  Evaluation of Interest Point Detectors , 2000, International Journal of Computer Vision.

[54]  Jitendra Malik,et al.  Contour and Texture Analysis for Image Segmentation , 2001, International Journal of Computer Vision.

[55]  Stephen M. Smith,et al.  SUSAN—A New Approach to Low Level Image Processing , 1997, International Journal of Computer Vision.

[56]  L. Gonzo,et al.  Digital photogrammetry and laser scanning in cultural heritage survey , 2004 .

[57]  Bülent Sankur,et al.  Survey over image thresholding techniques and quantitative performance evaluation , 2004, J. Electronic Imaging.

[58]  R. Sukthankar,et al.  PCA-SIFT: a more distinctive representation for local image descriptors , 2004, Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004. CVPR 2004..

[59]  Demetri Terzopoulos,et al.  Snakes: Active contour models , 2004, International Journal of Computer Vision.

[60]  R. Manmatha,et al.  Multiple Bernoulli relevance models for image and video annotation , 2004, Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004. CVPR 2004..

[61]  Stephan Helling,et al.  Algorithms for spectral color stimulus reconstruction with a seven-channel multispectral camera , 2004, CGIV.

[62]  Sheng-Jyh Wang,et al.  Contrast-based color image segmentation , 2004, IEEE Signal Process. Lett..

[63]  W.E. Snyder,et al.  Color image processing pipeline , 2005, IEEE Signal Processing Magazine.

[64]  Changick Kim,et al.  Segmenting a low-depth-of-field image using morphological filters and region merging , 2005, IEEE Transactions on Image Processing.

[65]  Frédéric Precioso,et al.  Robust real-time segmentation of images and videos using a smooth-spline snake-based algorithm , 2005, IEEE Transactions on Image Processing.

[66]  Aleksandra Mojsilovic,et al.  Adaptive perceptual color-texture image segmentation , 2005, IEEE Transactions on Image Processing.

[67]  Bill Triggs,et al.  Histograms of oriented gradients for human detection , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[68]  Wolfgang Boehler,et al.  Investigating Laser Scanner Accuracy , 2005 .

[69]  Leonidas J. Guibas,et al.  Robust global registration , 2005, SGP '05.

[70]  Laurent D. Cohen,et al.  A Metric Approach to Vector-Valued Image Segmentation , 2006, International Journal of Computer Vision.

[71]  Andrew Zisserman,et al.  Scene Classification Via pLSA , 2006, ECCV.

[72]  Michael M. Kazhdan,et al.  Poisson surface reconstruction , 2006, SGP '06.

[73]  Siegfried Handschuh,et al.  Semantic annotation for knowledge management: Requirements and a survey of the state of the art , 2006, J. Web Semant..

[74]  Fabio Remondino,et al.  Image‐based 3D Modelling: A Review , 2006 .

[75]  Begoña Acha,et al.  Color-texture image segmentation based on multistep region growing , 2006 .

[76]  K. Uchimura,et al.  Fusion of vision, GPS and 3D gyro data in solving camera registration problem for direct visual navigation , 2006 .

[77]  Steffen Staab,et al.  M-OntoMat-Annotizer: Image Annotation Linking Ontologies and Multimedia Low-Level Features , 2006, KES.

[78]  Gareth Funka-Lea,et al.  Graph Cuts and Efficient N-D Image Segmentation , 2006, International Journal of Computer Vision.

[79]  Tom Drummond,et al.  Machine Learning for High-Speed Corner Detection , 2006, ECCV.

[80]  Jie Yang,et al.  Unsupervised color-texture segmentation based on soft criterion with adaptive mean-shift clustering , 2006, Pattern Recognit. Lett..

[81]  Joaquim Salvi,et al.  Review of CMOS image sensors , 2006, Microelectron. J..

[82]  Giuseppe Patanè,et al.  From geometric to semantic human body models , 2006, Comput. Graph..

[83]  M. Pierrot-Deseilligny,et al.  A MULTIRESOLUTION AND OPTIMIZATION-BASED IMAGE MATCHING APPROACH : AN APPLICATION TO SURFACE RECONSTRUCTION FROM SPOT 5-HRS STEREO IMAGERY , 2006 .

[84]  Cordelia Schmid,et al.  Coloring Local Feature Extraction , 2006, ECCV.

[85]  Miguel-Ángel Sicilia Metadata, semantics, and ontology: providing meaning to information resources , 2006, Int. J. Metadata Semant. Ontologies.

[86]  Yogesh Rathi,et al.  Image Segmentation Using Active Contours Driven by the Bhattacharyya Gradient Flow , 2007, IEEE Transactions on Image Processing.

[87]  Marco Attene,et al.  Part-Based Annotation of Virtual 3D Shapes , 2007, 2007 International Conference on Cyberworlds (CW'07).

[88]  Nenghai Yu,et al.  Image Annotation in a Progressive Way , 2007, 2007 IEEE International Conference on Multimedia and Expo.

[89]  A. Vedaldi An open implementation of the SIFT detector and descriptor , 2007 .

[90]  Marco Attene,et al.  Semantic Annotation of 3D Surface Meshes Based on Feature Characterization , 2007, SAMT.

[91]  Gustavo Carneiro,et al.  Supervised Learning of Semantic Classes for Image Annotation and Retrieval , 2007, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[92]  Hai Jin,et al.  Color Image Segmentation Based on Mean Shift and Normalized Cuts , 2007, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[93]  James Ze Wang,et al.  Real-Time Computerized Annotation of Pictures , 2006, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[94]  Luc Van Gool,et al.  An Efficient Dense and Scale-Invariant Spatio-Temporal Interest Point Detector , 2008, ECCV.

[95]  Ko Nishino,et al.  Scale-Dependent/Invariant Local 3D Shape Descriptors for Fully Automatic Registration of Multiple Sets of Range Images , 2008, ECCV.

[96]  Hans Martin Zogg,et al.  Investigations of High Precision Terrestrial Laser Scanning with Emphasis on the Development of a Robust Close-Range 3D-Laser Scanning System , 2008 .

[97]  Yao Zhao,et al.  A Novel Image Annotation Scheme Based on Neural Network , 2008, 2008 Eighth International Conference on Intelligent Systems Design and Applications.

[98]  M. Elias,et al.  Multispectral camera and radiative transfer equation used to depict Leonardo's sfumato in Mona Lisa. , 2008, Applied optics.

[99]  Leonidas J. Guibas,et al.  A concise and provably informative multi-scale signature based on heat diffusion , 2009 .

[100]  Jesmin F. Khan,et al.  A customized Gabor filter for unsupervised color image segmentation , 2009, Image Vis. Comput..

[101]  Jie Wang,et al.  An Edge-Weighted Centroidal Voronoi Tessellation Model for Image Segmentation , 2009, IEEE Transactions on Image Processing.

[102]  Gertjan J. Burghouts,et al.  Performance evaluation of local colour invariants , 2009, Comput. Vis. Image Underst..

[103]  Martin Buss,et al.  Comparison of surface normal estimation methods for range sensing applications , 2009, 2009 IEEE International Conference on Robotics and Automation.

[104]  Johannes Wallner,et al.  Integral invariants for robust geometry processing , 2009, Comput. Aided Geom. Des..

[105]  Sven Havemann,et al.  The arrigo showcase reloaded—towards a sustainable link between 3D and semantics , 2008, JOCCH.

[106]  Jing Liu,et al.  Image annotation via graph learning , 2009, Pattern Recognit..

[107]  Fabio Remondino,et al.  Reality-Based 3D Modeling, Segmentation and Web-Based Visualization , 2010, EuroMed.

[108]  Vincent Lepetit,et al.  BRIEF: Binary Robust Independent Elementary Features , 2010, ECCV.

[109]  Qiang Ji,et al.  Image Segmentation with a Unified Graphical Model , 2010, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[110]  Roberto Scopigno,et al.  Improving 2D-3D Registration by Mutual Information using Gradient Maps , 2010, Eurographics Italian Chapter Conference.

[111]  Michel Florenzano,et al.  Time indeterminacy and spatio-temporal building transformations: an approach for architectural heritage understanding , 2010 .

[112]  Nam Ik Cho,et al.  Image segmentation algorithms based on the machine learning of features , 2010, Pattern Recognit. Lett..

[113]  Vincent Lepetit,et al.  DAISY: An Efficient Dense Descriptor Applied to Wide-Baseline Stereo , 2010, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[114]  Radu Bogdan Rusu,et al.  Semantic 3D Object Maps for Everyday Manipulation in Human Living Environments , 2010, KI - Künstliche Intelligenz.

[115]  Darius Burschka,et al.  Adaptive and Generic Corner Detection Based on the Accelerated Segment Test , 2010, ECCV.

[116]  J. Conrat,et al.  Utilisation des photos panoramiques pour la compréhension des phénomènes physiques du canal de propagation , 2010 .

[117]  Fengxi Song,et al.  Feature Selection Using Principal Component Analysis , 2010, 2010 International Conference on System Science, Engineering Design and Manufacturing Informatization.

[118]  Livio De Luca,et al.  An Iconography-Based Modeling Approach for the Spatio-Temporal Analysis of Architectural Heritage , 2010, 2010 Shape Modeling International Conference.

[119]  Charless C. Fowlkes,et al.  Contour Detection and Hierarchical Image Segmentation , 2011, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[120]  Simone Gasparini,et al.  Camera Models and Fundamental Concepts Used in Geometric Computer Vision , 2011, Found. Trends Comput. Graph. Vis..

[121]  Jane Hunter,et al.  Assessing the value of semantic annotation services for 3D museum artefacts , 2011 .

[122]  Sabine Süsstrunk,et al.  Multi-spectral SIFT for scene category recognition , 2011, CVPR 2011.

[123]  Livio De Luca,et al.  Automated Image-Based Procedures for Accurate Artifacts 3D Modeling and Orthoimage Generation , 2011 .

[124]  Céline Hudelot,et al.  Towards ontologies for image interpretation and annotation , 2011, 2011 9th International Workshop on Content-Based Multimedia Indexing (CBMI).

[125]  Ashok Veeraraghavan,et al.  Structured light 3D scanning in the presence of global illumination , 2011, CVPR 2011.

[126]  Roland Siegwart,et al.  BRISK: Binary Robust invariant scalable keypoints , 2011, 2011 International Conference on Computer Vision.

[127]  Gary R. Bradski,et al.  ORB: An efficient alternative to SIFT or SURF , 2011, 2011 International Conference on Computer Vision.

[128]  Andrew Y. Ng,et al.  Parsing Natural Scenes and Natural Language with Recursive Neural Networks , 2011, ICML.

[129]  Zhi Liu,et al.  Unsupervised image segmentation based on analysis of binary partition tree for salient object extraction , 2011, Signal Process..

[130]  Sven Behnke,et al.  Real-Time Plane Segmentation Using RGB-D Cameras , 2012, RoboCup.

[131]  Huajun Chen,et al.  The Semantic Web , 2011, Lecture Notes in Computer Science.

[132]  Thomas P. Kersten,et al.  Low-Cost and Open-Source Solutions for Automated Image Orientation - A Critical Overview , 2012, EuroMed.

[133]  Eli Saber,et al.  Survey of contemporary trends in color image segmentation , 2012, J. Electronic Imaging.

[134]  Jidong Huang,et al.  Study on the use of Microsoft Kinect for robotics applications , 2012, Proceedings of the 2012 IEEE/ION Position, Location and Navigation Symposium.

[135]  Vincent Lepetit,et al.  Efficient Discriminative Projections for Compact Binary Descriptors , 2012, ECCV.

[136]  Pierre Andrews,et al.  A classification of semantic annotation systems , 2012, Semantic Web.

[137]  Md. Monirul Islam,et al.  A review on automatic image annotation techniques , 2012, Pattern Recognit..

[138]  Frank Dellaert,et al.  Planar Segmentation of RGBD Images Using Fast Linear Fitting and Markov Chain Monte Carlo , 2012, 2012 Ninth Conference on Computer and Robot Vision.

[139]  M. Pierrot Deseilligny,et al.  APERO, AN OPEN SOURCE BUNDLE ADJUSMENT SOFTWARE FOR AUTOMATIC CALIBRATION AND ORIENTATION OF SET OF IMAGES , 2012 .

[140]  Derek Hoiem,et al.  Indoor Segmentation and Support Inference from RGBD Images , 2012, ECCV.

[141]  Burkhard Wünsche,et al.  Using the Kinect as a navigation sensor for mobile robotics , 2012, IVCNZ '12.

[142]  O. Jafar,et al.  A study on fuzzy and particle swarm optimization algorithms and their applications to clustering problems , 2012, 2012 IEEE International Conference on Advanced Communication Control and Computing Technologies (ICACCCT).

[143]  Michael M. Kazhdan,et al.  Screened poisson surface reconstruction , 2013, TOGS.

[144]  Marc Pierrot-Deseilligny,et al.  PHOTOGRAPHER-FRIENDLY WORK-FLOWS FOR IMAGE-BASED MODELLING OF HERITAGE ARTEFACTS , 2013 .

[145]  N. Janwe,et al.  Automatic Image Annotation : A Review , 2013 .

[146]  Menna,et al.  ACCURACY AND BLOCK DEFORMATION ANALYSIS IN AUTOMATIC UAV AND TERRESTRIAL PHOTOGRAMMETRY – LESSON LEARNT – , 2013 .

[147]  Richard Taillet Dictionnaire de physique , 2013 .

[148]  K. Wenzel,et al.  A comparison of dense matching algorithms for scaled surface reconstruction using stereo camera rigs , 2013 .

[149]  Alessandro Capra,et al.  On the evaluation of photogrammetric methods for dense 3D surface reconstruction in a metrological context. , 2014 .

[150]  Livio De Luca,et al.  Laying the Foundations for an Information System Dedicated to Heritage Building Degradation Monitoring Based on the 2D/3D Semantic Annotation of Photographs , 2014, GCH.

[151]  George Pavlidis,et al.  Multi-image 3D reconstruction data evaluation , 2014 .

[152]  David Lo Buglio,et al.  Evaluating the Curvature Analysis as a Key Feature for the Semantic Description of Architectural Elements , 2014, GCH.

[153]  Dhatri Pandya,et al.  Comparative Study on Automatic Image Annotation , 2014 .

[154]  Stephen Lin,et al.  Object-based RGBD image co-segmentation with mutex constraint , 2015, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[155]  Livio De Luca,et al.  Analyzing the evolution of deterioration patterns: A first step of an image-based approach for comparing multitemporal data sets , 2015, 2015 Digital Heritage.

[156]  Anthony Pamart,et al.  Morphological analysis of shape semantics from curvature-based signatures , 2015, 2015 Digital Heritage.

[157]  Livio De Luca,et al.  Towards an ontology for annotating degradation phenomena , 2015, 2015 Digital Heritage.

[158]  Vincent Lepetit,et al.  TILDE: A Temporally Invariant Learned DEtector , 2014, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).