Acute Type Refinements of Tetrahedral Partitions of Polyhedral Domains

We present a new technique to perform refinements on acute type tetrahedral partitions of a polyhedral domain, provided that the center of the circumscribed sphere around each tetrahedron belongs to the tetrahedron. The resulting family of partitions is of acute type; thus, all the tetrahedra satisfy the maximum angle condition. Both these properties are highly desirable in finite element analysis.

[1]  B. Joe,et al.  Relationship between tetrahedron shape measures , 1994 .

[2]  M. Lukáčová-Medvid'ová,et al.  On the Convergence of a Combined Finite Volume{Finite Element Method for Nonlinear Convection{Diffusion Problems , 1997 .

[3]  N. Golias,et al.  An approach to refining three‐dimensional tetrahedral meshes based on Delaunay transformations , 1994 .

[4]  P. G. Ciarlet,et al.  Maximum principle and uniform convergence for the finite element method , 1973 .

[5]  M. Krízek,et al.  On the maximum angle condition for linear tetrahedral elements , 1992 .

[6]  Philippe G. Ciarlet,et al.  Discrete maximum principle for finite-difference operators , 1970 .

[7]  T. Strouboulis,et al.  How to generate local refinements of unstructured tetrahedral meshes satisfying a regularity ball condition , 1997 .

[8]  Joseph L. Gerver,et al.  The dissection of a polygon into nearly equilateral triangles , 1984 .

[9]  Enrico Bertolazzi DISCRETE CONSERVATION AND DISCRETE MAXIMUM PRINCIPLE FOR ELLIPTIC PDEs , 1998 .

[10]  Michal Křížek,et al.  An equilibrium finite element method in three-dimensional elasticity , 1982 .

[11]  Barry Joe,et al.  Quality Local Refinement of Tetrahedral Meshes Based on Bisection , 1995, SIAM J. Sci. Comput..

[12]  Eberhard Bänsch,et al.  Local mesh refinement in 2 and 3 dimensions , 1991, IMPACT Comput. Sci. Eng..

[13]  Igor Kossaczký A recursive approach to local mesh refinement in two and three dimensions , 1994 .

[14]  Ralf Kornhuber,et al.  On adaptive grid refinement in the presence of internal or boundary layers , 1990, IMPACT Comput. Sci. Eng..

[15]  A. Liu,et al.  On the shape of tetrahedra from bisection , 1994 .

[16]  Brenda S. Baker,et al.  Nonobtuse triangulation of polygons , 1988, Discret. Comput. Geom..

[17]  G. Strang,et al.  An Analysis of the Finite Element Method , 1974 .