Group developed weighing matrices
暂无分享,去创建一个
[1] Jennifer Seberry,et al. Circulant weighing matrices , 2010, Cryptography and Communications.
[2] Ali Nabavi,et al. Determination of all possible orders of weight 16 circulant weighing matrices , 2006, Finite Fields Their Appl..
[3] Richard Hain. Circulant weighing matrices , 1977 .
[4] Jennifer Seberry,et al. Orthogonal Designs: Quadratic Forms and Hadamard Matrices , 1979 .
[5] Siu Lun Ma,et al. Polynomial addition sets , 1985 .
[6] Jennifer Seberry,et al. On circulant and two-circulant weighing matrices , 2010, Australas. J Comb..
[7] Michael J. Mossinghoff. Wieferich pairs and Barker sequences , 2009, Des. Codes Cryptogr..
[8] K. T. Arasu,et al. Perfect Ternary Arrays , 1999 .
[9] A. Pott,et al. Difference sets, sequences and their correlation properties , 1999 .
[10] Robert Winter,et al. Dimensional crossover in Sr2RuO4 within a slave-boson mean-field theory , 2008, 0812.3731.
[11] R. Mullin,et al. A note on balanced weighing matrices , 1975 .
[12] K. T. Arasu,et al. Some New Results on Circulant Weighing Matrices , 2001 .
[13] K. T. Arasu,et al. Study of proper circulant weighing matrices with weight 9 , 2008, Discret. Math..
[14] E. Lander. Symmetric Designs: An Algebraic Approach , 1983 .
[15] R. Turyn. Character sums and difference sets. , 1965 .
[16] D. Jungnickel,et al. The Solution of the Waterloo Problem , 1995, J. Comb. Theory, Ser. A.
[17] C. Colbourn,et al. Handbook of Combinatorial Designs , 2006 .
[18] Jennifer Seberry,et al. Circulant weighing designs , 1996 .
[19] Dragomir Z. Dokovic. Hadamard matrices of order 764 exist , 2008, Comb..
[20] D. Đoković. Hadamard matrices of order 764 exist , 2008 .