Adaptive nonsingular terminal sliding mode control for synchronization of identical Φ6 oscillators

The main goal of this paper is to propose the adaptive nonsingular terminal sliding mode controllers for complete synchronization (CS) and anti-synchronization (AS) between two identical Φ6 Van der Pol or Duffing oscillators with presentations of system uncertainties and external disturbances. Unlike directly eliminating the nonlinear items of synchronized error system for sliding mode control schemes in the literature, the proposed adaptive controllers can tackle the nonlinear dynamics without active cancellation. The controllers can be implemented without known bounds of system uncertainties and external disturbances. Meanwhile, the feedback gains are not determined in advance but updated by the adaptive rules. Sufficient conditions are given based on the Lyapunov stability theorem and numerical simulations are performed to verify the effectiveness of presented schemes. The results show that the chaotic synchronization can be achieved accurately by the chattering free control.

[1]  Chi-Ching Yang Adaptive control and synchronization of identical new chaotic flows with unknown parameters via single input , 2010, Appl. Math. Comput..

[2]  M. Siewe Siewe,et al.  Resonant oscillation and homoclinic bifurcation in a Φ6-Van der Pol oscillator , 2004 .

[3]  Yan Xu,et al.  Chaos synchronization and parameter estimation of single-degree-of-freedom oscillators via adaptive control , 2010 .

[4]  Zhihong Man,et al.  Non-singular terminal sliding mode control of rigid manipulators , 2002, Autom..

[5]  Paul Woafo,et al.  Linear feedback and parametric controls of vibrations and chaotic escape in a Φ6 potential , 2003 .

[6]  Shih-Yu Li,et al.  Pragmatical adaptive synchronization of different orders chaotic systems with all uncertain parameters via nonlinear control , 2011 .

[7]  Zhihong Man,et al.  Continuous finite-time control for robotic manipulators with terminal sliding mode , 2003, Autom..

[8]  M. Yahyazadeh,et al.  Synchronization of chaotic systems with known and unknown parameters using a modified active sliding mode control. , 2011, ISA transactions.

[9]  Aria Alasty,et al.  Synchronization of chaotic systems with parameter uncertainties via variable structure control , 2006 .

[10]  Sohrab Khanmohammadi,et al.  Synchronization of two different uncertain chaotic systems with unknown parameters using a robust adaptive sliding mode controller , 2011 .

[11]  Hong Ren Wu,et al.  A robust MIMO terminal sliding mode control scheme for rigid robotic manipulators , 1994, IEEE Trans. Autom. Control..

[12]  Samuel Bowong,et al.  Adaptive synchronization of chaotic systems with unknown bounded uncertainties via backstepping approach , 2007 .

[13]  Wenlin Li,et al.  Adaptive synchronization for a unified chaotic system with uncertainty , 2010 .

[14]  A. N. Njah,et al.  Synchronization via active control of parametrically and externally excited Φ6 Van der Pol and Duffing oscillators and application to secure communications , 2011 .

[15]  M. P. Aghababa,et al.  Finite-time synchronization of two different chaotic systems with unknown parameters via sliding mode technique , 2011 .

[16]  Carroll,et al.  Synchronization in chaotic systems. , 1990, Physical review letters.

[17]  M. Zohdy,et al.  Recursive backstepping control of chaotic Duffing oscillators , 2007, Proceedings of the 2004 American Control Conference.

[18]  Paul Woafo,et al.  Resonant oscillations and fractal basin boundaries of a particle in a φ6 potential , 2002 .

[19]  Zhujun Jing,et al.  Complex dynamics in Duffing–Van der Pol equation , 2006 .

[20]  Andrew Chi Sing Leung,et al.  Adaptive synchronization of identical chaotic and hyper-chaotic systems with uncertain parameters , 2010 .

[21]  Uchechukwu E. Vincent,et al.  Synchronization of chaos in non-identical parametrically excited systems , 2009 .

[22]  Li Ruihong,et al.  Chaos control and synchronization of the Φ6-Van der Pol system driven by external and parametric excitations , 2008 .

[23]  Nejib Smaoui,et al.  Synchronization of the unified chaotic systems using a sliding mode controller , 2009 .

[24]  A. N. Njah Synchronization via active control of identical and non-identical Φ6 chaotic oscillators with external excitation , 2009 .

[25]  Andrew Chi Sing Leung,et al.  Complete (anti-)synchronization of chaotic systems with fully uncertain parameters by adaptive control , 2011 .

[26]  Chi-Ching Yang,et al.  Adaptive synchronization of Lü hyperchaotic system with uncertain parameters based on single-input controller , 2011 .

[27]  Chao-Chung Peng,et al.  Variable structure based robust backstepping controller design for nonlinear systems , 2011 .

[28]  A. N. Njah,et al.  Tracking control and synchronization of the new hyperchaotic Liu system via backstepping techniques , 2010 .

[29]  Shihua Chen,et al.  Synchronizing the noise-perturbed unified chaotic system by sliding mode control , 2006 .

[30]  Uchechukwu E. Vincent,et al.  Chaos synchronization between single and double wells Duffing–Van der Pol oscillators using active control , 2008 .

[31]  H. Yau Design of adaptive sliding mode controller for chaos synchronization with uncertainties , 2004 .