Phase Formation and Solubilities in the Ternary System Ni(OH)2–NiCl2–H2O at 25 and 200 °C

The solid/liquid equilibria in the ternary system Ni(OH)2–NiCl2–H2O at temperatures of 25 and 200 °C have been investigated by applying equilibration periods of up to 45 months (3 years and 9 months). The equilibration process was studied by isothermal saturation methods using different solids as starting materials. At 200 °C, Ni2Cl(OH)3 and NiCl(OH) occur as stable phases, whereas a solid solution, NiClx(OH)2–x (ss-type-OH), appears as an intermediate phase. At 25 °C, two nickel(II) chloride hydroxide hydrates, Ni3Cl2+x(OH)4–x·4H2O and Ni3Cl(OH)5·4H2O, are formed. The latter phase was characterized for the first time and a structural model was created from a Rietveld refinement of the powder X-ray diffraction pattern. A systematic investigation of the solubilities at 25 °C revealed that Ni2Cl(OH)3 is the solid phase in both dilute and concentrated NiCl2 solutions at this temperature. In general, all stable and metastable phases in the system Ni(OH)2–NiCl2–H2O exhibit very low solubility, but during the very slow phase transformations high hydroxide supersaturations occur that are persistent for years.

[1]  R. Dinnebier,et al.  Ni3Cl2+x(OH)4–x·2H2O: Structural, Thermal, Spectral, and Magnetic Properties in Dependence of the Chloride Content , 2016 .

[2]  R. Dinnebier,et al.  Structure solution and refinement of stacking-faulted NiCl(OH) , 2015 .

[3]  R. Dinnebier,et al.  A solid solution series of atacamite type Ni2xMg2−2xCl(OH)3 , 2015 .

[4]  D. J. Lockwood,et al.  Nickel hydroxides and related materials: a review of their structures, synthesis and properties , 2015, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[5]  G. Han,et al.  Synthesis of nickel hydroxychloride microspheres via a facile template-free process and their conversion to β-Ni(OH)2 microspheres , 2014 .

[6]  R. Dinnebier,et al.  Ni3Cl2.1(OH)3.9·4H2O, the Ni analogue to Mg3Cl2(OH)4·4H2O. , 2014, Inorganic chemistry.

[7]  Abdullah M. Asiri,et al.  PH-driven dissolution–precipitation: a novel route toward ultrathin Ni(OH)2 nanosheets array on nickel foam as binder-free anode for Li-ion batteries with ultrahigh capacity , 2013 .

[8]  R. Dinnebier,et al.  2Mg(OH)2·MgCl2·2H2O and 2Mg(OH)2·MgCl2·4H2O, Two High Temperature Phases of the Magnesia Cement System , 2012 .

[9]  J. Hanson,et al.  The Crystal Structures of two Anhydrous Magnesium Hydroxychloride Phases from in situ Synchrotron Powder Diffraction Data , 2011 .

[10]  I. Natkaniec,et al.  Atomic structure and lattice dynamics of Ni and Mg hydroxides , 2010 .

[11]  R. Dinnebier,et al.  9Mg(OH)(2)·MgCl(2)·4H(2)O, a high temperature phase of the magnesia binder system. , 2010, Inorganic chemistry.

[12]  R. Dinnebier,et al.  Structure determination of Mg3(OH)5Cl.4H2O (F5 phase) from laboratory powder diffraction data and its impact on the analysis of problematic magnesia floors. , 2007, Acta crystallographica. Section B, Structural science.

[13]  J. Cline,et al.  Fundamental Parameters Line Profile Fitting in Laboratory Diffractometers , 2004, Journal of Research of the National Institute of Standards and Technology.

[14]  W. Voigt,et al.  The measurement of sulfate mineral solubilities in the Na-K-Ca-Cl-SO4-H2O system at temperatures of 100, 150 and 200°C , 2004 .

[15]  V. Metz,et al.  Solid-liquid equilibria of Mg(OH)2(cr) and Mg2(OH)3Cl·4H2O(cr) in the system Mg-Na-H-OH-Cl-H2O at 25°C , 2003 .

[16]  E. D. Oliveira,et al.  Infrared study of magnesium–nickel hydroxide solid solutions , 2003 .

[17]  Natalia V. Plyasunova,et al.  Critical evaluation of thermodynamics of complex formation of metal ions in aqueous solutions. IV. Hydrolysis and hydroxo-complexes of Ni2+ at 298.15 K , 1998 .

[18]  J. Gopalakrishnan,et al.  On the existence of hydrotalcite-like phases in the absence of trivalent cations , 1997 .

[19]  H. Masuda,et al.  X-ray structural studies of FeBr2·4H2O, CoBr2·4H2O, NiCl2·4H2O and CuBr2·4H2O. cis/trans selectivity in transition metal(II) dihalide tetrahydrate , 1992 .

[20]  Armel Le Bail,et al.  Ab-initio structure determination of LiSbWO6 by X-ray powder diffraction , 1988 .

[21]  P. Hagenmuller,et al.  New families of cobalt substituted nickel oxyhydroxides and hydroxides obtained by soft chemistry , 1987 .

[22]  R. D. Shannon Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides , 1976 .

[23]  R. Kleinberg Crystal Structure of NiCl2·6H2O at Room Temperature and 4.2°K by Neutron Diffraction , 1969 .

[24]  B. Morosin An X-ray diffraction study on nickel(II) chloride dihydrate , 1967 .

[25]  H. Oswald,et al.  Über die Hydroxidhalogenide Me2(OH)3Cl, ‐Br, ‐J zweiwertiger Metalle (Me = Mg, Ni, Co, Cu, Fe, Mn) , 1964 .

[26]  H. Oswald,et al.  Über die Hydroxidchloride Me(OH)Cl. (Me = Mg, Ni, Co, Cu, Zn, Fe, Mn, Cd, Ca, Sn) , 1961 .

[27]  P. M. D. Wolff,et al.  Crystal structure determination from an x-ray powder diffraction pattern of β-Mg2(OH)3Cl , 1954 .

[28]  W. Feitknecht,et al.  Zur Chemie und Morphologie der basischen Salze zweiwertiger Metalle VII. Über basische Nickelchloride experimentell bearbeitet , 1939 .

[29]  W. Feitknecht Über die Konstitution der festen basischen Salze zweiwertiger Metalle. I. Basische Kobalthalogenide mit „Einfachschichtengitter”. (XIII. Mitteilung über basische Salze) , 1936 .

[30]  E. Boye Die Löslichkeiten der Hydrate des Nickelchlorids in Wasser , 1933 .