ISM Properties of a Massive Dusty Star-forming Galaxy Discovered at z ∼ 7

International Max Planck Research School (IMPRS) for Astronomy and Astrophysics at the University of Bonn; International Max Planck Research School (IMPRS) for Astronomy and Astrophysics at the University of Cologne; FONDECYT [1140099]; U.S. National Science Foundation [AST-1312950]; ERC Advanced Investigator programme DUSTYGAL [321334]; Simons Foundation; NSF [AST-1009452, AST-1445357]; NASA HST from the Space Telescope Science Institute [AR-13906.001]; NASA [NAS5-26555]; Cottrell College Science Award - Research Corporation for Science Advancement; Commonwealth of Australia; National Science Foundation [PLR-1248097]; Kavli Foundation; Gordon and Betty Moore Foundation [GBMF 947]; [PHY-1125897]

[1]  C. A. Oxborrow,et al.  Planck2015 results , 2015, Astronomy & Astrophysics.

[2]  R. Bouwens High-Redshift Galaxy Surveys and the Reionization of the Universe , 2015, 1511.01133.

[3]  W. Everett,et al.  THE REDSHIFT DISTRIBUTION OF DUSTY STAR-FORMING GALAXIES FROM THE SPT SURVEY , 2016, 1603.05094.

[4]  Andrei Mesinger,et al.  Understanding the Epoch of Cosmic Reionization , 2016 .

[5]  J. Carlstrom,et al.  ALMA IMAGING AND GRAVITATIONAL LENS MODELS OF SOUTH POLE TELESCOPE—SELECTED DUSTY, STAR-FORMING GALAXIES AT HIGH REDSHIFTS , 2016, 1604.05723.

[6]  R. Wilson,et al.  The relationship between carbon monoxide abundance and visual extinction in interstellar clouds. , 1982 .

[7]  M. Rosenman,et al.  SUBMILLIMETER OBSERVATIONS OF MILLIMETER BRIGHT GALAXIES DISCOVERED BY THE SOUTH POLE TELESCOPE , 2012, 1206.4550.

[8]  Jr.,et al.  The Global Schmidt law in star forming galaxies , 1997, astro-ph/9712213.

[9]  Adrian T. Lee,et al.  ALMA REDSHIFTS OF MILLIMETER-SELECTED GALAXIES FROM THE SPT SURVEY: THE REDSHIFT DISTRIBUTION OF DUSTY STAR-FORMING GALAXIES , 2013, 1303.2726.

[10]  Adrian T. Lee,et al.  The 10 Meter South Pole Telescope , 2009, 0907.4445.

[11]  P. D. Werf,et al.  The molecular gas in Luminous Infrared Galaxies I: CO lines, extreme physical conditions, and their drivers , 2011, 1109.4176.

[12]  C. Henkel,et al.  Atomic carbon at redshift ~2.5 , 2005 .

[13]  Gilles Chabrier,et al.  The Galactic Disk Mass Function: Reconciliation of the Hubble Space Telescope and Nearby Determinations , 2003, astro-ph/0302511.

[14]  P. Solomon,et al.  Rotating Nuclear Rings and Extreme Starbursts in Ultraluminous Galaxies , 1998, astro-ph/9806377.

[15]  Duc Truong Pham,et al.  The Bees Algorithm: Modelling foraging behaviour to solve continuous optimization problems , 2009 .

[16]  D. Stark Galaxies in the First Billion Years After the Big Bang , 2016 .

[17]  P. P. van der Werf,et al.  ALMA SPECTROSCOPIC SURVEY IN THE HUBBLE ULTRA DEEP FIELD: THE INFRARED EXCESS OF UV-SELECTED z = 2–10 GALAXIES AS A FUNCTION OF UV-CONTINUUM SLOPE AND STELLAR MASS , 2016, 1606.05280.

[18]  D. Narayanan,et al.  Dusty Star Forming Galaxies at High Redshift , 2014, 1402.1456.

[19]  P. Goldsmith Molecular Depletion and Thermal Balance in Dark Cloud Cores , 2000 .

[20]  Liverpool John Moores University,et al.  DETECTION OF ATOMIC CARBON [C ii] 158 μm AND DUST EMISSION FROM A z = 7.1 QUASAR HOST GALAXY , 2012, 1203.5844.

[21]  C. Henkel,et al.  Highly-excited CO emission in APM 08279+5255 at z = 3.9 , 2007, astro-ph/0702669.

[22]  S. Meyer,et al.  Dusty starburst galaxies in the early Universe as revealed by gravitational lensing , 2013, Nature.

[23]  S. Okamura,et al.  STATISTICS OF 207 Lyα EMITTERS AT A REDSHIFT NEAR 7: CONSTRAINTS ON REIONIZATION AND GALAXY FORMATION MODELS , 2010, 1007.2961.

[24]  P. P. van der Werf,et al.  THE HERSCHEL COMPREHENSIVE (U)LIRG EMISSION SURVEY (HERCULES): CO LADDERS, FINE STRUCTURE LINES, AND NEUTRAL GAS COOLING , 2015, 1501.02985.

[25]  J. Carlstrom,et al.  SUB-KILOPARSEC IMAGING OF COOL MOLECULAR GAS IN TWO STRONGLY LENSED DUSTY, STAR-FORMING GALAXIES , 2015, 1508.07369.

[26]  Adrian T. Lee,et al.  EXTRAGALACTIC MILLIMETER-WAVE POINT-SOURCE CATALOG, NUMBER COUNTS AND STATISTICS FROM 771 deg2 OF THE SPT-SZ SURVEY , 2013, 1306.3470.

[27]  D. Narayanan,et al.  A physical model for the [C II]-FIR deficit in luminous galaxies , 2016, 1601.05803.

[28]  N. Scoville STARBURST AND AGN CONNECTIONS AND MODELS , 2003 .

[29]  B. Altieri,et al.  A dust-obscured massive maximum-starburst galaxy at a redshift of 6.34 , 2013, Nature.

[30]  D. Benford,et al.  A 158 μm [C ii] LINE SURVEY OF GALAXIES AT z ∼ 1–2: AN INDICATOR OF STAR FORMATION IN THE EARLY UNIVERSE , 2010, 1009.4216.

[31]  J. Carlstrom,et al.  The nature of the [C II] emission in dusty star-forming galaxies from the SPT survey , 2015, 1501.06909.

[32]  P. S. Bunclark,et al.  Astronomical Data Analysis Software and Systems , 2008 .

[33]  Nanjing,et al.  Molecular Gas in Extreme Star-Forming Environments: The Starbursts Arp 220 and NGC 6240 as Case Studies , 2006, astro-ph/0610378.

[34]  Todd A. Thompson,et al.  Radiation Pressure-supported Starburst Disks and Active Galactic Nucleus Fueling , 2005 .