Duality theory for multi-marginal optimal transport with repulsive costs in metric spaces

In this paper we extend the duality theory of the multi-marginal optimal transport problem for cost functions depending on a decreasing function of the distance (not necessarily bounded). This class of cost functions appears in the context of SCE Density Functional Theory introduced in Strong-interaction limit of density-functional theory by Seidl [Phys. Rev. A 60 (1999) 4387].

[1]  Differentiation of set functions using Vitali coverings , 1960 .

[2]  P. Hohenberg,et al.  Inhomogeneous Electron Gas , 1964 .

[3]  M. Levy Universal variational functionals of electron densities, first-order density matrices, and natural spin-orbitals and solution of the v-representability problem. , 1979, Proceedings of the National Academy of Sciences of the United States of America.

[4]  Elliott H. Lieb Density functionals for coulomb systems , 1983 .

[5]  H. Kellerer Duality theorems for marginal problems , 1984 .

[6]  M. Seidl Strong-interaction limit of density-functional theory , 1999 .

[7]  Andrea Braides Gamma-Convergence for Beginners , 2002 .

[8]  C. Villani Topics in Optimal Transportation , 2003 .

[9]  Xu-jia Wang On the design of a reflector antenna II , 2004 .

[10]  Wilfrid Gangbo,et al.  Existence of optimal maps in the reflector-type problems , 2007 .

[11]  P. Gori-Giorgi,et al.  Strictly correlated electrons in density-functional theory: A general formulation with applications to spherical densities , 2007, cond-mat/0701025.

[12]  C. Villani Optimal Transport: Old and New , 2008 .

[13]  P. Gori-Giorgi,et al.  Density-functional theory for strongly interacting electrons. , 2009, Physical review letters.

[14]  Codina Cotar,et al.  Density Functional Theory and Optimal Transportation with Coulomb Cost , 2011, 1104.0603.

[15]  Paola Gori-Giorgi,et al.  Strong correlation in Kohn-Sham density functional theory. , 2012, Physical review letters.

[16]  Ville Suomala,et al.  Existence of doubling measures via generalised nested cubes , 2010, 1011.0683.

[17]  G. Buttazzo,et al.  Optimal-transport formulation of electronic density-functional theory , 2012, 1205.4514.

[18]  Claudia Klüppelberg,et al.  N-density representability and the optimal transport limit of the Hohenberg-Kohn functional. , 2013, The Journal of chemical physics.

[19]  Huajie Chen,et al.  Numerical Methods for a Kohn-Sham Density Functional Model Based on Optimal Transport. , 2014, Journal of chemical theory and computation.

[20]  Maria Colombo,et al.  Counterexamples in multimarginal optimal transport with Coulomb cost and spherically symmetric data , 2015, 1507.08522.

[21]  L. Pascale Optimal Transport with Coulomb cost. Approximation and duality , 2015, 1503.07063.

[22]  Hector Merino-Cruz,et al.  On Closed Ideals in a Certain Class of Algebras of Holomorphic Functions , 2015, Canadian Mathematical Bulletin.

[23]  Simone Di Marino,et al.  Multimarginal Optimal Transport Maps for One–dimensional Repulsive Costs , 2015, Canadian Journal of Mathematics.

[24]  Thierry Champion,et al.  Continuity and Estimates for Multimarginal Optimal Transportation Problems with Singular Costs , 2016, 1608.08780.

[25]  P. Gori-Giorgi,et al.  The adiabatic strictly-correlated-electrons functional: kernel and exact properties. , 2016, Physical chemistry chemical physics : PCCP.

[26]  R. Leeuwen,et al.  Time-dependent density-functional theory for strongly interacting electrons , 2017, 1703.00724.

[27]  L. Pascale,et al.  Optimal transport with Coulomb cost and the semiclassical limit of Density Functional Theory , 2017, 1702.04957.

[28]  Claudia Klüppelberg,et al.  Smoothing of Transport Plans with Fixed Marginals and Rigorous Semiclassical Limit of the Hohenberg–Kohn Functional , 2017, 1706.05676.

[29]  Mathieu Lewin,et al.  Semi-classical limit of the Levy-Lieb functional in Density Functional Theory , 2017, 1706.02199.

[30]  Simone Di Marino,et al.  The strictly-correlated electron functional for spherically symmetric systems revisited , 2017, 1702.05022.

[31]  Augusto Gerolin,et al.  Nonexistence of Optimal Transport Maps for the Multimarginal Repulsive Harmonic Cost , 2018, SIAM J. Math. Anal..

[32]  P. Alam,et al.  R , 1823, The Herodotus Encyclopedia.