Hyperchaos in a Simple CNN

In this paper we demonstrate hyperchaotic dynamics in a very simple Cellular Neural Network (CNN) which is a one-dimensional regular array of four cells. The Lyapunov spectrum is calculated in a range of parameters, and the bifurcation plot is presented as well.

[1]  T. Tsubone,et al.  Hyperchaos from a 4-D manifold piecewise-linear system , 1998 .

[2]  Toshimichi Saito,et al.  A simple hyperchaos generator based on impulsive switching , 2004, IEEE Transactions on Circuits and Systems II: Express Briefs.

[3]  M. Brucoli,et al.  Associative memory design using discrete-time second-order neural networks with local interconnections , 1997 .

[4]  Yu Zhang,et al.  Hyperchaotic synchronisation scheme for digital speech communication , 1999 .

[5]  O. Rössler An equation for hyperchaos , 1979 .

[6]  A. Cenys,et al.  Hyperchaotic oscillator with gyrators , 1997 .

[7]  Leon O. Chua,et al.  Autonomous cellular neural networks: a unified paradigm for pattern formation and active wave propagation , 1995 .

[8]  G. Grassi,et al.  A new approach to design cellular neural networks for associative memories , 1997 .

[9]  P. Arena,et al.  Hyperchaos from cellular neural networks , 1995 .

[10]  L. Chua,et al.  Hyper chaos: Laboratory experiment and numerical confirmation , 1986 .

[11]  Lin-Bao Yang,et al.  Cellular neural networks: theory , 1988 .

[12]  T. Saito An approach toward higher dimensional hysteresis chaos generators , 1990 .

[13]  S. Mascolo,et al.  A system theory approach for designing cryptosystems based on hyperchaos , 1999 .

[14]  K. Thamilmaran,et al.  Hyperchaos in a Modified Canonical Chua's Circuit , 2004, Int. J. Bifurc. Chaos.

[15]  D. Ruelle,et al.  Ergodic theory of chaos and strange attractors , 1985 .