Bambus[n]urils: a new family of macrocyclic anion receptors.

A recently discovered anion receptor is jointed by three related macrocycles differing in the number of glycoluril units and type of substitution. The synthesis is carried out in nonpolar solvents compared to aqueous media used in the case of the original macrocycle. The size of macrocycle is controlled by a template. A hexameric macrocycle with benzyl substitution binds halide anions with an affinity exceeding 10(9) M(-1) while a tetrameric analog does not bind any of the investigated anions.

[1]  A. Kaifer,et al.  Anion-free bambus[6]uril and its supramolecular properties. , 2011, Chemistry.

[2]  J. Švec,et al.  Bambus[6]uril. , 2010, Angewandte Chemie.

[3]  M. Mocerino,et al.  A brief review of C n -symmetric calixarenes and resorcinarenes , 2010 .

[4]  P. Spanu,et al.  Short and highly stereoselective total synthesis of d- ribo -configured ureido sugars , 2008 .

[5]  Lyle Isaacs,et al.  The cucurbit[n]uril family. , 2005, Angewandte Chemie.

[6]  M. Crisma,et al.  Diastereoselective synthesis of 5-(alditol-1-C-yl)-hydantoins and their use as precursors of polyhydroxylated-α-amino acids , 2004 .

[7]  Jae Wook Lee,et al.  Cucurbituril homologues and derivatives: new opportunities in supramolecular chemistry. , 2003, Accounts of chemical research.

[8]  Philip A. Gale,et al.  Pyrrolic and polypyrrolic anion binding agents , 2003 .

[9]  Hoon Hwang,et al.  Synthesis of a strapped calix[4]pyrrole: structure and anion binding properties. , 2002, Angewandte Chemie.

[10]  Y. Eichen,et al.  Extended Calixpyrroles: meso-Substituted Calix[6]pyrroles. , 1998, Angewandte Chemie.

[11]  Keiko Takahashi,et al.  Organic Reactions Mediated by Cyclodextrins. , 1998, Chemical reviews.

[12]  J. Szejtli Introduction and General Overview of Cyclodextrin Chemistry. , 1998, Chemical reviews.

[13]  Atsushi Ikeda,et al.  Novel Cavity Design Using Calix[n]arene Skeletons: Toward Molecular Recognition and Metal Binding. , 1997, Chemical reviews.

[14]  K. A. Connors,et al.  The Stability of Cyclodextrin Complexes in Solution. , 1997, Chemical reviews.

[15]  Philip A. Gale,et al.  Calix[4]pyrroles:  Old Yet New Anion-Binding Agents , 1996 .

[16]  V. Böhmer,et al.  Calixarenes, Macrocycles with (Almost) Unlimited Possibilities , 1995 .

[17]  R. Gallo,et al.  Isolation and X-ray structure of the intermediate dihydroxyimidazolidine(DHI) in the synthesis of glycoluril from glyoxal and urea. , 1988 .

[18]  B. Foxman,et al.  Crown thioether chemistry: structural and conformational studies of tetrathia-12-crown-4, pentathia-15-crown-5, and hexathia-18-crown-6. Implications for ligand design , 1987 .

[19]  C. Gutsche,et al.  Calixarenes. 8. Short, stepwise synthesis of p-phenylcalix[4]arene and p-phenyl-p-tert-butylcalix[4]arene and derived products , 1982 .

[20]  H. Simmons,et al.  Macrobicyclic amines. III. Encapsulation of halide ions by in,in-1,(k + 2)-diazabicyclo[k.l.m.]alkane ammonium ions , 1968 .

[21]  H. Simmons,et al.  Macrobicyclic amines. I. Out-in isomerism of 1,(k+2)-diazabicyclo[k.l.m]alkanes , 1968 .

[22]  R. Barker,et al.  Formation and Identification of cis- and trans-Dihydroxyimidazolidinones from Ureas and Glyoxal , 1965 .