A diffuse-interface method for two-phase flows with soluble surfactants

A method is presented to solve two-phase problems involving soluble surfactants. The incompressible Navier-Stokes equations are solved along with equations for the bulk and interfacial surfactant concentrations. A non-linear equation of state is used to relate the surface tension to the interfacial surfactant concentration. The method is based on the use of a diffuse interface, which allows a simple implementation using standard finite difference or finite element techniques. Here, finite difference methods on a block-structured adaptive grid are used, and the resulting equations are solved using a non-linear multigrid method. Results are presented for a drop in shear flow in both 2D and 3D, and the effect of solubility is discussed.

[1]  C. Pozrikidis,et al.  Interfacial dynamics for Stokes flow , 2001 .

[2]  Michael Siegel,et al.  Influence of surfactant solubility on the deformation and breakup of a bubble or capillary jet in a viscous fluid , 2009 .

[3]  S. Zaleski,et al.  DIRECT NUMERICAL SIMULATION OF FREE-SURFACE AND INTERFACIAL FLOW , 1999 .

[4]  M. Siegel,et al.  A hybrid numerical method for interfacial fluid flow with soluble surfactant , 2010, J. Comput. Phys..

[5]  Nikolaus A. Adams,et al.  A conservative SPH method for surfactant dynamics , 2010, J. Comput. Phys..

[6]  Charles M. Elliott,et al.  An Eulerian approach to transport and diffusion on evolving implicit surfaces , 2009, Comput. Vis. Sci..

[7]  Elias I. Franses,et al.  Adsorption dynamics of surfactants at the air/water interface: a critical review of mathematical models, data, and mechanisms , 1995 .

[8]  Andrea Prosperetti,et al.  Motion of two superposed viscous fluids , 1981 .

[9]  J. Li,et al.  Numerical simulation of breakup of a viscous drop in simple shear flow through a volume-of-fluid method , 2000 .

[10]  Metin Muradoglu,et al.  A front-tracking method for computation of interfacial flows with soluble surfactants , 2008, J. Comput. Phys..

[11]  Charles M. Elliott,et al.  ANALYSIS OF A DIFFUSE INTERFACE APPROACH TO AN ADVECTION DIFFUSION EQUATION ON A MOVING SURFACE , 2009 .

[12]  David J. Pine,et al.  Drop deformation, breakup, and coalescence with compatibilizer , 2000 .

[13]  Víctor M. Pérez-García,et al.  Spectral smoothed boundary methods: The role of external boundary conditions , 2006 .

[14]  Yi-Jou Jan,et al.  Computational studies of bubble dynamics. , 1994 .

[15]  Roberto Mauri,et al.  Diffuse-Interface Modeling of Phase Segregation in Liquid Mixtures , 2008 .

[16]  Steven M. Wise,et al.  Solving the regularized, strongly anisotropic Cahn-Hilliard equation by an adaptive nonlinear multigrid method , 2007, J. Comput. Phys..

[17]  Axel Voigt,et al.  A DIFFUSE-INTERFACE APPROACH FOR MODELING TRANSPORT, DIFFUSION AND ADSORPTION/DESORPTION OF MATERIAL QUANTITIES ON A DEFORMABLE INTERFACE. , 2009, Communications in mathematical sciences.

[18]  Charles M. Elliott,et al.  Eulerian finite element method for parabolic PDEs on implicit surfaces , 2008 .

[19]  Junseok Kim,et al.  Phase field modeling and simulation of three-phase flows , 2005 .

[20]  James J. Feng,et al.  A diffuse-interface method for simulating two-phase flows of complex fluids , 2004, Journal of Fluid Mechanics.

[21]  Jie Zhang,et al.  A front tracking method for a deformable intravascular bubble in a tube with soluble surfactant transport , 2006, J. Comput. Phys..

[22]  Axel Voigt,et al.  A diffuse-interface approximation for surface diffusion including adatoms , 2007 .

[23]  S. Osher,et al.  Efficient implementation of essentially non-oscillatory shock-capturing schemes,II , 1989 .

[24]  J. Sethian,et al.  Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations , 1988 .

[25]  Xiaofeng Yang,et al.  An arbitrary Lagrangian -Eulerian method for interfacial flows with insoluble surfactants , 2005 .

[26]  S. Osher,et al.  Weighted essentially non-oscillatory schemes , 1994 .

[27]  Wouter-Jan Rappel,et al.  Computational approach for modeling intra- and extracellular dynamics. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[28]  Heike Emmerich,et al.  Advances of and by phase-field modelling in condensed-matter physics , 2008 .

[29]  J. Lowengrub,et al.  Quasi–incompressible Cahn–Hilliard fluids and topological transitions , 1998, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[30]  A. Voigt,et al.  PDE's on surfaces---a diffuse interface approach , 2006 .

[31]  J. Goodman,et al.  Modeling pinchoff and reconnection in a Hele-Shaw cell. I. The models and their calibration , 2002 .

[32]  L. G. Leal,et al.  Flow induced coalescence of drops in a viscous fluid , 2002 .

[33]  J. Lowengrub,et al.  Conservative multigrid methods for Cahn-Hilliard fluids , 2004 .

[34]  D. Jacqmin Regular Article: Calculation of Two-Phase Navier–Stokes Flows Using Phase-Field Modeling , 1999 .

[35]  Chunfeng Zhou,et al.  A computational study of the coalescence between a drop and an interface in Newtonian and viscoelastic fluids , 2006 .

[36]  Ming-Jiu Ni,et al.  Consistent projection methods for variable density incompressible Navier-Stokes equations with continuous surface forces on a rectangular collocated mesh , 2009, J. Comput. Phys..

[37]  C. Peskin The immersed boundary method , 2002, Acta Numerica.

[38]  C. Pozrikidis,et al.  Effects of inertia on the deformation of liquid drops in simple shear flow , 1995 .

[39]  David S. Rumschitzki,et al.  On the surfactant mass balance at a deforming fluid interface , 1996 .

[40]  A. Karma,et al.  Phase-field method for computationally efficient modeling of solidification with arbitrary interface kinetics. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[41]  Junseok Kim,et al.  A continuous surface tension force formulation for diffuse-interface models , 2005 .

[42]  Karl B Glasner,et al.  A diffuse interface approach to Hele-Shaw flow , 2003 .

[43]  S. D. Hudson,et al.  The effect of surfactant on the efficiency of shear-induced drop coalescence. , 2003, Journal of colloid and interface science.

[44]  Gianluca Iaccarino,et al.  IMMERSED BOUNDARY METHODS , 2005 .

[45]  J. S. Goldstein,et al.  The motion of bubbles in a vertical temperature gradient , 1959, Journal of Fluid Mechanics.

[46]  Jonathan Goodman,et al.  Modeling pinchoff and reconnection in a Hele-Shaw cell. II. Analysis and simulation in the nonlinear regime , 2002 .

[47]  Michael Siegel,et al.  Influence of insoluble surfactant on the deformation and breakup of a bubble or thread in a viscous fluid , 2007, Journal of Fluid Mechanics.

[48]  Héctor D. Ceniceros,et al.  Computation of multiphase systems with phase field models , 2002 .

[49]  D. M. Anderson,et al.  DIFFUSE-INTERFACE METHODS IN FLUID MECHANICS , 1997 .

[50]  William E. Lorensen,et al.  Marching cubes: a high resolution 3D surface construction algorithm , 1996 .

[51]  P. Colella,et al.  An Adaptive Level Set Approach for Incompressible Two-Phase Flows , 1997 .

[52]  F. Fenton,et al.  Modeling wave propagation in realistic heart geometries using the phase-field method. , 2005, Chaos.

[53]  G. Amberg,et al.  The splash of a solid sphere impacting on a liquid surface: Numerical simulation of the influence of wetting , 2009 .

[54]  Xiangrong Li,et al.  SOLVING PDES IN COMPLEX GEOMETRIES: A DIFFUSE DOMAIN APPROACH. , 2009, Communications in mathematical sciences.

[55]  C. Macosko,et al.  CFD evaluation of drop retraction methods for the measurement of interfacial tension of surfactant-laden drops. , 2004, Journal of colloid and interface science.

[56]  R. A. De Bruijn,et al.  Tipstreaming of drops in simple shear flows , 1993 .

[57]  Zhilin Li,et al.  A level-set method for interfacial flows with surfactant , 2006, J. Comput. Phys..

[58]  R. V. D. Sman,et al.  Diffuse interface model of surfactant adsorption onto flat and droplet interfaces , 2006 .

[59]  Howard A. Stone,et al.  Dynamics of Drop Deformation and Breakup in Viscous Fluids , 1994 .

[60]  T. M. Tsai,et al.  Tip streaming from a drop in the presence of surfactants. , 2001, Physical review letters.

[61]  L. Gary Leal,et al.  The Influence of Surfactant on the Deformation and Breakup of a Viscous Drop: The Effect of Surfactant Solubility , 1994 .

[62]  Axel Voigt,et al.  Phase-field modeling of the dynamics of multicomponent vesicles: Spinodal decomposition, coarsening, budding, and fission. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[63]  Patrick Patrick Anderson,et al.  Diffuse-interface modelling of droplet impact , 2007, Journal of Fluid Mechanics.

[64]  Víctor M. Pérez-García,et al.  Spectral Methods for Partial Differential Equations in Irregular Domains: The Spectral Smoothed Boundary Method , 2006, SIAM J. Sci. Comput..

[65]  Chang Shu,et al.  Diffuse interface model for incompressible two-phase flows with large density ratios , 2007, J. Comput. Phys..

[66]  A. Karma,et al.  Quantitative phase-field modeling of dendritic growth in two and three dimensions , 1996 .

[67]  J. Ferziger,et al.  A ghost-cell immersed boundary method for flow in complex geometry , 2002 .

[68]  L. G. Leal,et al.  The effects of surfactants on drop deformation and breakup , 1990, Journal of Fluid Mechanics.

[69]  Vittorio Cristini,et al.  A new volume-of-fluid formulation for surfactants and simulations of drop deformation under shear at a low viscosity ratio , 2002 .

[70]  Howard A. Stone,et al.  The effect of surfactant on the transient motion of Newtonian drops , 1993 .

[71]  Amir Hirsa,et al.  Measurements of vortex pair interaction with a clean or contaminated free surface , 1994, Journal of Fluid Mechanics.

[72]  David Jacqmin,et al.  Contact-line dynamics of a diffuse fluid interface , 2000, Journal of Fluid Mechanics.

[73]  J. Lowengrub,et al.  A surfactant-conserving volume-of-fluid method for interfacial flows with insoluble surfactant , 2004 .

[74]  Franck Boyer,et al.  Numerical study of viscoelastic mixtures through a Cahn–Hilliard flow model , 2004 .

[75]  David Kay,et al.  Efficient Numerical Solution of Cahn-Hilliard-Navier-Stokes Fluids in 2D , 2007, SIAM J. Sci. Comput..

[76]  Wouter-Jan Rappel,et al.  Membrane-bound Turing patterns. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[77]  Kathleen J. Stebe,et al.  The effects of a diffusion controlled surfactant on a viscous drop injected into a viscous medium , 2007 .

[78]  Herbolzheimer,et al.  Model for the fingering instability of spreading surfactant drops. , 1990, Physical review letters.

[79]  Hsiang-Wei Lu,et al.  A diffuse-interface model for electrowetting drops in a Hele-Shaw cell , 2005, Journal of Fluid Mechanics.

[80]  P. Colella,et al.  A second-order projection method for the incompressible navier-stokes equations , 1989 .

[81]  J. Lowengrub,et al.  Two-phase flow in complex geometries: A diffuse domain approach. , 2010, Computer modeling in engineering & sciences : CMES.

[82]  Ming-Chih Lai,et al.  An immersed boundary method for interfacial flows with insoluble surfactant , 2008, J. Comput. Phys..

[83]  Vittorio Cristini,et al.  An adaptive mesh algorithm for evolving surfaces: simulation of drop breakup and coalescence , 2001 .

[84]  Patrick Patrick Anderson,et al.  Capillary spreading of a droplet in the partially wetting regime using a diffuse-interface model , 2007, Journal of Fluid Mechanics.

[85]  Sandra M. Troian,et al.  The development of transient fingering patterns during the spreading of surfactant coated films , 1999 .

[86]  Wei Shyy,et al.  Marker-Based, 3-D Adaptive Cartesian Grid Method for Multiphase Flow around Irregular Geometries , 2008 .

[87]  Irina Singer-Loginova,et al.  The phase field technique for modeling multiphase materials , 2008 .

[88]  Héctor D. Ceniceros,et al.  The effects of surfactants on the formation and evolution of capillary waves , 2003 .

[89]  Hongkai Zhao,et al.  An Eulerian Formulation for Solving Partial Differential Equations Along a Moving Interface , 2003, J. Sci. Comput..

[90]  Charles D. Eggleton,et al.  Insoluble surfactants on a drop in an extensional flow: a generalization of the stagnated surface limit to deforming interfaces , 1999, Journal of Fluid Mechanics.

[91]  Ying-Chih Liao,et al.  Can surfactant be present at pinch-off of a liquid filament? , 2007, Physical review letters.

[92]  D. Juric,et al.  A front-tracking method for the computations of multiphase flow , 2001 .

[93]  Xiaofan Li,et al.  The effect of surfactants on drop deformation and on the rheology of dilute emulsions in Stokes flow , 1997, Journal of Fluid Mechanics.

[94]  Gretar Tryggvason,et al.  Collision of a vortex pair with a contaminated free surface , 1992 .

[95]  Patrick D Anderson,et al.  Numerical investigation of the effect of insoluble surfactants on drop deformation and breakup in simple shear flow. , 2006, Journal of colloid and interface science.

[96]  Ying-Chih Liao,et al.  Deformation and breakup of a stretching liquid bridge covered with an insoluble surfactant monolayer , 2006 .

[97]  J. Sethian,et al.  LEVEL SET METHODS FOR FLUID INTERFACES , 2003 .