Stable absorbing boundary conditions for molecular dynamics in general domains

A systematic strategy of absorbing boundary conditions for molecular dynamics simulations are presented. The exact boundary conditions for crystalline solids with harmonic approximation are expressed as a dynamic Dirichlet-to-Neumann (DtN) map. It connects the displacement of the atoms at the boundary to the traction on these atoms. The DtN map is valid for a domain with general geometry. To avoid evaluating the time convolution of the dynamic DtN map, we approximate the associated kernel function by rational functions in the Laplace domain. The parameters in the approximations are determined by interpolations. The explicit forms of the zeroth, first, and second order approximations will be presented. The stability of the molecular dynamics model, supplemented with these absorbing boundary conditions is established. Two numerical simulations are performed to demonstrate the effectiveness of the methods.

[1]  Diana Farkas,et al.  Molecular Statics Simulation Of Crack Propagation In A-Fe Using Eam Potentials , 1995 .

[2]  Leslie Greengard,et al.  Efficient representation of nonreflecting boundary conditions for the time‐dependent Schrödinger equation in two dimensions , 2008 .

[3]  Per-Gunnar Martinsson,et al.  Asymptotic expansions of lattice Green's functions , 2002, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[4]  C. Y. Wang,et al.  Elastodynamic fundamental solutions for anisotropic solids , 1994 .

[5]  B. Engquist,et al.  Absorbing boundary conditions for acoustic and elastic wave equations , 1977, Bulletin of the Seismological Society of America.

[6]  L. Greengard,et al.  Nonreflecting Boundary Conditions for the Time-Dependent Wave Equation , 2002 .

[7]  Jerry Zhijian Yang,et al.  Comparative study of boundary conditions for molecular dynamics simulations of solids at low temperature , 2006 .

[8]  David J. Keffer,et al.  Absorbing Boundary Conditions for Molecular Dynamics and Multiscale Modeling , 2007 .

[9]  J. Doll,et al.  Generalized Langevin equation approach for atom/solid–surface scattering: Numerical techniques for Gaussian generalized Langevin dynamics , 1976 .

[10]  Eduard G. Karpov,et al.  Molecular dynamics boundary conditions for regular crystal lattices , 2004 .

[11]  Senganal Thirunavukkarasu,et al.  Phonon absorbing boundary conditions for molecular dynamics , 2009, J. Comput. Phys..

[12]  W. Cai,et al.  Minimizing boundary reflections in coupled-domain simulations. , 2000, Physical review letters.

[13]  J. D. Doll,et al.  Generalized Langevin equation approach for atom/solid‐surface scattering: Collinear atom/harmonic chain model , 1974 .

[14]  A. Majda,et al.  Absorbing boundary conditions for the numerical simulation of waves , 1977 .

[15]  G. Mur Absorbing Boundary Conditions for the Finite-Difference Approximation of the Time-Domain Electromagnetic-Field Equations , 1981, IEEE Transactions on Electromagnetic Compatibility.

[16]  Xiantao Li,et al.  An atomistic-based boundary element method for the reduction of molecular statics models , 2012 .

[17]  D. L. Dorofeev,et al.  On static analysis of finite repetitive structures by discrete Fourier transform , 2002 .

[18]  Shaofan Li,et al.  Perfectly matched multiscale simulations for discrete lattice systems: Extension to multiple dimensions , 2006 .

[19]  Xiantao Li,et al.  Variational boundary conditions for molecular dynamics simulations: Treatment of the loading condition , 2008, J. Comput. Phys..

[20]  Xiantao Li,et al.  Variational Boundary Conditions for Molecular Dynamics Simulations of Solids at Low Temperature , 2005 .

[21]  E Weinan,et al.  A multiscale coupling method for the modeling of dynamics of solids with application to brittle cracks , 2010, J. Comput. Phys..

[22]  Marcus J. Grote,et al.  Exact Nonreflecting Boundary Conditions for the Time Dependent Wave Equation , 1995, SIAM J. Appl. Math..

[23]  Peter M. Pinsky,et al.  On the implementation of the Dirichlet-to-Neumann radiation condition for iterative solution of the Helmholtz equation , 1998 .

[24]  E Weinan,et al.  A dynamic atomistic-continuum method for the simulation of crystalline materials , 2001 .

[25]  David Gottlieb,et al.  A Mathematical Analysis of the PML Method , 1997 .

[26]  Xiantao Li,et al.  Simulations of micron-scale fracture using atomistic-based boundary element method , 2017 .

[27]  Leslie Greengard,et al.  Fast evaluation of nonreflecting boundary conditions for the Schrödinger equation in one dimension , 2004 .

[28]  Artificial boundary conditions for atomic simulations of face-centered-cubic lattice , 2012 .

[29]  Gregory J. Wagner,et al.  Coupling of atomistic and continuum simulations using a bridging scale decomposition , 2003 .

[30]  Shaofan Li,et al.  Perfectly matched multiscale simulations , 2005 .

[31]  S. N. Hornsleth,et al.  Retarded time absorbing boundary conditions , 1994 .

[32]  Jean-Pierre Berenger,et al.  A perfectly matched layer for the absorption of electromagnetic waves , 1994 .

[33]  Xiantao Li,et al.  On the stability of boundary conditions for molecular dynamics , 2009, J. Comput. Appl. Math..

[34]  E Weinan,et al.  Variational boundary conditions for molecular dynamics simulations of crystalline solids at finite temperature: Treatment of the thermal bath , 2007 .

[35]  Shaoqiang Tang,et al.  Matching boundary conditions for diatomic chains , 2010 .

[36]  David Gottlieb,et al.  On the construction and analysis of absorbing layers in CEM , 1998 .

[37]  Laurence Halpern,et al.  Absorbing boundary conditions for the discretization schemes of the one-dimensional wave equation , 1982 .

[38]  Shaoqiang Tang,et al.  Eliminating corner effects in square lattice simulation , 2018 .

[39]  M. Guddati,et al.  Continued fraction absorbing boundary conditions for convex polygonal domains , 2006 .

[40]  L. Perko Differential Equations and Dynamical Systems , 1991 .

[41]  Eduard G. Karpov,et al.  A Green's function approach to deriving non‐reflecting boundary conditions in molecular dynamics simulations , 2005 .

[42]  A. Majda,et al.  Radiation boundary conditions for acoustic and elastic wave calculations , 1979 .

[43]  Harold S. Park,et al.  Non‐reflecting boundary conditions for atomistic, continuum and coupled atomistic/continuum simulations , 2005 .

[44]  Harold S. Park,et al.  A phonon heat bath approach for the atomistic and multiscale simulation of solids , 2007 .

[45]  S. Gedney,et al.  On the long-time behavior of unsplit perfectly matched layers , 2004, IEEE Transactions on Antennas and Propagation.

[46]  W. E,et al.  Matching conditions in atomistic-continuum modeling of materials. , 2001, Physical review letters.

[47]  Dirac and Klein Gordon equations with equal scalar and vector potentials , 2005, hep-th/0503208.

[48]  M. Ghazisaeidi,et al.  Convergence rate for numerical computation of the lattice Green's function. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[49]  M. Baer,et al.  The time‐dependent Schrödinger equation: Application of absorbing boundary conditions , 1989 .

[50]  Patrick Joly,et al.  Stability of perfectly matched layers, group velocities and anisotropic waves , 2003 .

[51]  J. Sochacki Absorbing boundary conditions for the elastic wave equations , 1988 .