Surface-wetting characterization using contact-angle measurements

[1]  Volpe D. Della,et al.  The Wilhelmy method: a critical and practical review , 2018 .

[2]  Robin H. A. Ras,et al.  Mapping microscale wetting variations on biological and synthetic water-repellent surfaces , 2017, Nature Communications.

[3]  A. Drechsler,et al.  Experimental studies of contact angle hysteresis phenomena on polymer surfaces – Toward the understanding and control of wettability for different applications. , 2015, Advances in colloid and interface science.

[4]  Mfi Statics and Dynamics , 2014 .

[5]  J. Drelich Guidelines to measurements of reproducible contact angles using a sessile-drop technique , 2013 .

[6]  Yanlin Song,et al.  Patterning of controllable surface wettability for printing techniques. , 2013, Chemical Society reviews.

[7]  Olli Ikkala,et al.  Reliable measurement of the receding contact angle. , 2013, Langmuir : the ACS journal of surfaces and colloids.

[8]  Robin H. A. Ras,et al.  Hydrophobic nanocellulose aerogels as floating, sustainable, reusable, and recyclable oil absorbents. , 2011, ACS applied materials & interfaces.

[9]  A. Marmur A Guide to the Equilibrium Contact Angles Maze , 2009 .

[10]  A. Marmur Solid-Surface Characterization by Wetting , 2009 .

[11]  A. Rudawska,et al.  Analysis for determining surface free energy uncertainty by the Owen–Wendt method , 2009 .

[12]  D. Quéré Wetting and Roughness , 2008 .

[13]  Alidad Amirfazli,et al.  Understanding of sliding and contact angle results in tilted plate experiments , 2008 .

[14]  M Hoorfar,et al.  Recent progress in axisymmetric drop shape analysis (ADSA). , 2006, Advances in colloid and interface science.

[15]  A. W. Neumann,et al.  On the question of rate-dependence of contact angles , 2006 .

[16]  T. Blake The physics of moving wetting lines. , 2006, Journal of colloid and interface science.

[17]  F Rupp,et al.  High surface energy enhances cell response to titanium substrate microstructure. , 2005, Journal of biomedical materials research. Part A.

[18]  Abraham Marmur,et al.  Drops down the hill: theoretical study of limiting contact angles and the hysteresis range on a tilted plate. , 2005, Langmuir : the ACS journal of surfaces and colloids.

[19]  E. Abel,et al.  Effect of temperature on the surface free energy of amorphous carbon films. , 2004, Journal of colloid and interface science.

[20]  Xuefeng Gao,et al.  Biophysics: Water-repellent legs of water striders , 2004, Nature.

[21]  A. Parker,et al.  Water capture by a desert beetle , 2001, Nature.

[22]  L. Schreiber,et al.  Protecting against water loss: analysis of the barrier properties of plant cuticles. , 2001, Journal of experimental botany.

[23]  Daniel Y. Kwok,et al.  Contact angle measurement and contact angle interpretation , 1999 .

[24]  Extrand,et al.  An Experimental Study of Contact Angle Hysteresis , 1997, Journal of colloid and interface science.

[25]  S. Herminghaus,et al.  Wetting: Statics and dynamics , 1997 .

[26]  W. Barthlott,et al.  Purity of the sacred lotus, or escape from contamination in biological surfaces , 1997, Planta.

[27]  C. Sykes,et al.  Average spreading parameter on heterogeneous surfaces , 1994 .

[28]  P. Gennes Wetting: statics and dynamics , 1985 .

[29]  C. Aring,et al.  A CRITICAL REVIEW , 1939, Journal of neurology and psychiatry.

[30]  Colm P. O'Donnell,et al.  Applications of cold plasma technology in food packaging , 2014 .

[31]  R. Good,et al.  Contact angle, wetting, and adhesion: a critical review , 1992 .

[32]  W. Zisman,et al.  Contact angle, wettability, and adhesion , 1964 .

[33]  T. Young III. An essay on the cohesion of fluids , 1805, Philosophical Transactions of the Royal Society of London.