Atomic and electronic structure of gold clusters: understanding flakes, cages and superatoms from simple concepts.

Atomic structure and electronic structure are intimately interrelated properties of nanoclusters and nanoparticles, defining their stability, electronic, optical and chemical properties, in other words, their usability as potential components for nanoscale devices. This tutorial review attempts to describe the development in understanding the structures of bare and ligand-protected gold clusters over the past decade, based on selected density-functional-theory calculations. This review should be of interest both to newcomers in the field and to an interdisciplinary community of researchers working in synthesis, characterization and utilization of ligand-protected gold clusters.

[1]  R. Whetten,et al.  A unified view of ligand-protected gold clusters as superatom complexes , 2008, Proceedings of the National Academy of Sciences.

[2]  Mikael P. Johansson,et al.  2D-3D transition of gold cluster anions resolved , 2008 .

[3]  M. Walter,et al.  Photoelectron spectra from first principles: from the many-body to the single-particle picture , 2008 .

[4]  R. Jin,et al.  Correlating the crystal structure of a thiol-protected Au25 cluster and optical properties. , 2008, Journal of the American Chemical Society.

[5]  R. Whetten,et al.  On the structure of thiolate-protected Au25. , 2008, Journal of the American Chemical Society.

[6]  R. Murray,et al.  Crystal structure of the gold nanoparticle [N(C8H17)4][Au25(SCH2CH2Ph)18]. , 2008, Journal of the American Chemical Society.

[7]  Pekka Pyykkö,et al.  Icosahedral Au(72): a predicted chiral and spherically aromatic golden fullerene. , 2008, Chemical communications.

[8]  Pablo D. Jadzinsky,et al.  Structure of a Thiol Monolayer-Protected Gold Nanoparticle at 1.1 Å Resolution , 2007, Science.

[9]  R. Whetten,et al.  Nano-Golden Order , 2007, Science.

[10]  K. Honkala,et al.  Electronic structure of MgO-supported Au clusters: quantum dots probed by scanning tunneling microscopy. , 2007, Physical review letters.

[11]  R. Whetten,et al.  Origin of magic stability of thiolated gold clusters: a case study on Au25(SC6H13)18. , 2007, Journal of the American Chemical Society.

[12]  M. Kappes,et al.  Au34-: a chiral gold cluster? , 2007, Angewandte Chemie.

[13]  Pekka Koskinen,et al.  Size-dependent structural evolution and chemical reactivity of gold clusters. , 2007, Chemphyschem : a European journal of chemical physics and physical chemistry.

[14]  M. Moseler,et al.  Liquid-liquid phase coexistence in gold clusters: 2D or not 2D? , 2007, Physical review letters.

[15]  M. Walter,et al.  A hollow tetrahedral cage of hexadecagold dianion provides a robust backbone for a tuneable sub-nanometer oxidation and reduction agent via endohedral doping. , 2006, Physical chemistry chemical physics : PCCP.

[16]  Uzi Landman,et al.  Structural evolution of Au nanoclusters: From planar to cage to tubular motifs , 2006 .

[17]  M. Walter,et al.  Theoretical characterization of cyclic thiolated gold clusters. , 2006, Journal of the American Chemical Society.

[18]  Xiao Cheng Zeng,et al.  Evidence of hollow golden cages. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[19]  Hannu Häkkinen,et al.  Divide and protect: capping gold nanoclusters with molecular gold-thiolate rings. , 2006, The journal of physical chemistry. B.

[20]  H. Nishihara,et al.  Synthesis, single crystal X-ray analysis, and TEM for a single-sized Au11 cluster stabilized by SR ligands: The interface between molecules and particles , 2006 .

[21]  Pekka Pyykkö,et al.  Theoretical chemistry of gold. II , 2005 .

[22]  Jinlan Wang,et al.  Hollow cages versus space-filling structures for medium-sized gold clusters: the spherical aromaticity of the Au50 cage. , 2005, The journal of physical chemistry. A.

[23]  Pekka Pyykkö,et al.  Theoretical chemistry of gold. , 2004, Angewandte Chemie.

[24]  Mikael P. Johansson,et al.  Au32: a 24-carat golden fullerene. , 2004, Angewandte Chemie.

[25]  M. Moseler,et al.  Symmetry and electronic structure of noble-metal nanoparticles and the role of relativity. , 2004, Physical review letters.

[26]  Hannu Häkkinen,et al.  On the Electronic and Atomic Structures of Small AuN- (N = 4−14) Clusters: A Photoelectron Spectroscopy and Density-Functional Study , 2003 .

[27]  E. Janssens,et al.  Two-dimensional magic numbers in mass abundances of photofragmented bimetallic clusters , 2003 .

[28]  Jun Li,et al.  Au20: A Tetrahedral Cluster , 2003, Science.

[29]  M. Parrinello,et al.  Pulling monatomic gold wires with single molecules: an Ab initio simulation. , 2002, Physical review letters.

[30]  Christoph R. Jacob,et al.  The structures of small gold cluster anions as determined by a combination of ion mobility measurements and density functional calculations , 2002 .

[31]  Hannu Häkkinen,et al.  Bonding in Cu, Ag, and Au clusters: relativistic effects, trends, and surprises. , 2002, Physical review letters.

[32]  Patrick Weis,et al.  Structures of small gold cluster cations (Aun+, n<14): Ion mobility measurements versus density functional calculations , 2002 .

[33]  Soler,et al.  Do thiols merely passivate gold nanoclusters? , 2000, Physical review letters.

[34]  Takayanagi,et al.  Synthesis and characterization of helical multi-shell gold nanowires , 2000, Science.

[35]  Uzi Landman,et al.  Gold clusters(AuN,2<~N<~10)and their anions , 2000 .

[36]  U. Landman,et al.  Structures and spectra of gold nanoclusters and quantum dot molecules , 1999 .

[37]  U. Landman,et al.  Electronic Structure of PassivatedAu38(SCH3)24Nanocrystal , 1999 .

[38]  D. Sánchez-Portal,et al.  Lowest Energy Structures of Gold Nanoclusters , 1998 .

[39]  Peter W. Stephens,et al.  Structural evolution of smaller gold nanocrystals: The truncated decahedral motif , 1997 .

[40]  Peter W. Stephens,et al.  Nanocrystal gold molecules , 1996 .

[41]  Walt A. de Heer,et al.  The physics of simple metal clusters: experimental aspects and simple models , 1993 .

[42]  Guenter Schmid,et al.  Large clusters and colloids. Metals in the embryonic state , 1992 .

[43]  Jena,et al.  Assembling crystals from clusters. , 1992, Physical review letters.

[44]  Xiaobo Shi,et al.  Pure gold cluster of 1:9:9:1:9:9:1 layered structure: a novel 39-metal-atom cluster [(Ph3P)14Au39Cl6]Cl2 with an interstitial gold atom in a hexagonal antiprismatic cage , 1992 .

[45]  K. J. Taylor,et al.  Ultraviolet photoelectron spectra of coinage metal clusters , 1992 .

[46]  Pekka Pyykkö,et al.  Relativistic effects in structural chemistry , 1988 .

[47]  R. Boese,et al.  Au55[P(C6H5)3]12CI6 — ein Goldcluster ungewöhnlicher Größe , 1981 .

[48]  D. Mingos Molecular-orbital calculations on cluster compounds of gold , 1976 .

[49]  K. Nobusada,et al.  Theoretical Investigation of Optimized Structures of Thiolated Gold Cluster [Au25(SCH3)18]+ , 2007 .

[50]  H. Grönbeck,et al.  Comparison of the bonding in Au8 and Cu8 : A density functional theory study , 2005 .

[51]  D. Astruc,et al.  Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. , 2004, Chemical reviews.

[52]  A. Curioni,et al.  Density functional theory approach to thiols and disulfides on gold: Au(111) surface and clusters , 2000 .

[53]  Mathias Brust,et al.  Synthesis of thiol-derivatised gold nanoparticles in a two-phase liquid-liquid system , 1994 .