Effect of Zr doping on dielectric properties and grain boundary response of CdCu3Ti4O12 ceramics

[1]  Hui Peng,et al.  Copper cadmium titanate prepared by different methods: Phase formation, dielectric properties and relaxor behaviors , 2018 .

[2]  Peng Liu,et al.  Enhancement of breakdown electric field and DC bias of (In0.5Nb0.5)0.005(Ti1-xZrx)0.995O2 colossal permittivity ceramics , 2018 .

[3]  X. Tan,et al.  Bismuth ferrite-based lead-free ceramics and multilayers with high recoverable energy density , 2018 .

[4]  Z. Xi,et al.  Dielectric relaxation and electrical conduction in (BixNa1−x)0.94Ba0.06TiO3 ceramics , 2018 .

[5]  X. Chao,et al.  High thermal stability and excellent dielectric properties of a novel X8R-type CdCu3Ti4O12 ceramics through a sol-gel technique , 2018 .

[6]  Chunlin Zhao,et al.  Effects of Secondary Phases on the High-Performance Colossal Permittivity in Titanium Dioxide Ceramics. , 2018, ACS applied materials & interfaces.

[7]  Hui Peng,et al.  Fabrication and characterization of CdCu3Ti4O12 ceramics with colossal permittivity and low dielectric loss , 2018 .

[8]  N. Chanlek,et al.  (Al3+, Nb5+) co–doped CaCu3Ti4O12: An extended approach for acceptor–donor heteroatomic substitutions to achieve high–performance giant–dielectric permittivity , 2018 .

[9]  Jianying Li,et al.  Significantly enhanced breakdown field in Ca 1-x Sr x Cu 3 Ti 4 O 12 ceramics by tailoring donor densities , 2017 .

[10]  P. Thongbai,et al.  Enhanced non−Ohmic properties and giant dielectric response of (Sm+Zn) co−doped CaCu3Ti4O12 ceramics , 2017 .

[11]  D. Lu,et al.  Mixed-valent structure, dielectric properties and defect chemistry of Ca1−3x/2TbxCu3Ti4−xTbxO12 ceramics , 2017 .

[12]  S. Maensiri,et al.  Giant dielectric permittivity and electronic structure in (A3+, Nb5+) co-doped TiO2 (A = Al, Ga and In) , 2017 .

[13]  P. Chindaprasirt,et al.  Microstructural evolution, non‐Ohmic properties, and giant dielectric response in CaCu3Ti4−xGexO12 ceramics , 2017 .

[14]  Shengtao Li,et al.  Space charge polarization modulated instability of low frequency permittivity in CaCu3Ti4O12 ceramics , 2017 .

[15]  E. Swatsitang,et al.  Very low loss tangent and giant dielectric properties of CaCu3Ti4O12 ceramics prepared by the sol–gel process , 2017, Journal of Materials Science: Materials in Electronics.

[16]  S. Maensiri,et al.  Very low dielectric loss and giant dielectric response with excellent temperature stability of Ga3 + and Ta5 + co-doped rutile-TiO2 ceramics , 2017 .

[17]  K. Jin,et al.  Relaxor‐like behaviors in Na1/2Bi1/2Cu3Ti4O12 ceramics , 2017 .

[18]  P. Kidkhunthod,et al.  Significantly improved non-Ohmic and giant dielectric properties of CaCu3-xZnxTi4O12 ceramics by enhancing grain boundary response , 2017 .

[19]  Jiafu Wang,et al.  Potassium–sodium niobate based lead-free ceramics: novel electrical energy storage materials , 2017 .

[20]  S. Maensiri,et al.  Non‐Ohmic Properties and Electrical Responses of Grains and Grain Boundaries of Na1/2Y1/2Cu3Ti4O12 Ceramics , 2017 .

[21]  X. Chao,et al.  Improved dielectric properties and grain boundary response in neodymium-doped Y2/3Cu3Ti4O12 ceramics , 2016 .

[22]  I. Kim,et al.  A Novel One‐Step Flame Synthesis Method for Tungsten‐Doped CCTO , 2016 .

[23]  Yongjia Zhang,et al.  Influence of Zirconium doping on microstructure and dielectric properties of CaCu3Ti4O12 synthesized by the sol–gel method , 2015 .

[24]  Yongjia Zhang,et al.  Sol–gel synthesized pure CaCu3Ti4O12 with very low dielectric loss and high dielectric constant , 2015 .

[25]  X. Chao,et al.  Dielectric response, impedance spectroscopy and scaling behavior of K-doped Y2/3Cu3Ti4O12 ceramics , 2015 .

[26]  Ashwini Kumar,et al.  Structural and optical properties of Ni substituted CaCu3Ti4 − xNixO12 , 2015 .

[27]  M. Cao,et al.  High-efficiency and dynamic stable electromagnetic wave attenuation for La doped bismuth ferrite at elevated temperature and gigahertz frequency , 2015 .

[28]  W. Cao,et al.  Nd doping of bismuth ferrite to tune electromagnetic properties and increase microwave absorption by magnetic–dielectric synergy , 2015 .

[29]  Zupei Yang,et al.  Synthesis and dielectric anomalies of CdCu3Ti4O12 ceramics , 2015 .

[30]  M. Cao,et al.  Sol–gel synthesis of Nd-doped BiFeO3 multiferroic and its characterization , 2015 .

[31]  S. Maensiri,et al.  Very high-performance dielectric properties of Ca1−3x/2YbxCu3Ti4O12 ceramics , 2014 .

[32]  X. Chao,et al.  Low dielectric loss, dielectric response, and conduction behavior in Na-doped Y2/3Cu3Ti4O12 ceramics , 2014 .

[33]  B. Zhang,et al.  Oleic acid assisted synthesis of CaCu3Ti4O12 powders and ceramics by sol–gel process , 2014, Journal of Materials Science: Materials in Electronics.

[34]  X. Chao,et al.  Preparation of CaCu3Ti4O12 ceramics with low dielectric loss and giant dielectric constant by the sol–gel technique , 2013 .

[35]  Hua Chen,et al.  Electron-pinned defect-dipoles for high-performance colossal permittivity materials. , 2013, Nature materials.

[36]  D. Sinclair,et al.  Non-stoichiometry in “CaCu3Ti4O12” (CCTO) ceramics , 2013 .

[37]  Chi Qingguo,et al.  Effects of Zr doping on the microstructures and dielectric properties of CaCu3Ti4O12 ceramics , 2013 .

[38]  D. Sinclair,et al.  Effects of sintering temperature on the internal barrier layer capacitor (IBLC) structure in CaCu3Ti4O12 (CCTO) ceramics , 2012 .

[39]  A. Campo,et al.  Dielectric behaviour of Hf-doped CaCu3Ti4O12 ceramics obtained by conventional synthesis and reactive sintering , 2012 .

[40]  W. Fei,et al.  Enhanced performance of core-shell-like structure Zr-doped CaCu3Ti4O12 ceramics prepared by a flame synthetic approach , 2012 .

[41]  Tao Li,et al.  The non-ohmic and dielectric behavior evolution of CaCu3Ti4O12 after heat treatments in oxygen-rich atmosphere , 2012 .

[42]  M. Cao,et al.  Investigation of ternary system Pb(Sn,Ti)O3–Pb(Mg1/3Nb2/3)O3 with morphotropic phase boundary compositions , 2012 .

[43]  A. Onodera,et al.  Huge Dielectric Properties of CdCu3Ti4O12 with CCTO Structure , 2011 .

[44]  Bin Chen,et al.  Observation of giant dielectric constant in CdCu3Ti4O12 ceramics , 2006 .

[45]  T. Fang,et al.  Mechanism for Developing the Boundary Barrier Layers of CaCu3Ti4O12 , 2005 .

[46]  N. Kolev,et al.  Raman spectroscopy of CaCu 3 Ti 4 O 12 , 2002 .

[47]  John W. Cahn,et al.  The Impurity‐Drag Effect in Grain Boundary Motion , 1962 .