Psychobiotics and the Manipulation of Bacteria–Gut–Brain Signals

[1]  M. Maes,et al.  The Role of the Microbial Metabolites Including Tryptophan Catabolites and Short Chain Fatty Acids in the Pathophysiology of Immune-Inflammatory and Neuroimmune Disease , 2016, Molecular Neurobiology.

[2]  K. Petersen,et al.  Acetate mediates a microbiome-brain-β cell axis promoting metabolic syndrome , 2016, Nature.

[3]  P. Cowen,et al.  Frontal Cortex Stimulation Reduces Vigilance to Threat: Implications for the Treatment of Depression and Anxiety , 2016, Biological Psychiatry.

[4]  Oluf Pedersen,et al.  Alterations in fecal microbiota composition by probiotic supplementation in healthy adults: a systematic review of randomized controlled trials , 2016, Genome Medicine.

[5]  K. Nishida,et al.  Fermented Milk Containing Lactobacillus casei Strain Shirota Preserves the Diversity of the Gut Microbiota and Relieves Abdominal Dysfunction in Healthy Medical Students Exposed to Academic Stress , 2016, Applied and Environmental Microbiology.

[6]  J. Delgado-García,et al.  Oral supplementation of 2'-fucosyllactose during lactation improves memory and learning in rats. , 2016, The Journal of nutritional biochemistry.

[7]  J. Bienenstock,et al.  Moody microbes or fecal phrenology: what do we know about the microbiota-gut-brain axis? , 2016, BMC Medicine.

[8]  G. Hong,et al.  Antidepressant-like effects of sodium butyrate and its possible mechanisms of action in mice exposed to chronic unpredictable mild stress , 2016, Neuroscience Letters.

[9]  T. Dinan,et al.  Influence of GABA and GABA-producing Lactobacillus brevis DPC 6108 on the development of diabetes in a streptozotocin rat model. , 2016, Beneficial microbes.

[10]  D. Anthony,et al.  Neonatal prebiotic (BGOS) supplementation increases the levels of synaptophysin, GluN2A‐subunits and BDNF proteins in the adult rat hippocampus , 2016, Synapse.

[11]  L. Bry,et al.  O-005 YI Microbiota Drives Inflammation by Altering Intestinal Lamina Propria Macrophage Phenotype in a Novel IL10R-Deficient Model of Very Early Onset IBD , 2016, Inflammatory bowel diseases.

[12]  K. S. Kim,et al.  Dietary antigens limit mucosal immunity by inducing regulatory T cells in the small intestine , 2016, Science.

[13]  Yaxuan Sun,et al.  Chitosan oligosaccharides alleviate cognitive deficits in an amyloid-β1-42-induced rat model of Alzheimer's disease. , 2016, International journal of biological macromolecules.

[14]  D. Bannerman,et al.  Prebiotic administration normalizes lipopolysaccharide (LPS)-induced anxiety and cortical 5-HT2A receptor and IL1-β levels in male mice , 2016, Brain, Behavior, and Immunity.

[15]  M. Surette,et al.  Structural & functional consequences of chronic psychosocial stress on the microbiome & host , 2016, Psychoneuroendocrinology.

[16]  Greg J. Stanisz,et al.  Magnetic resonance spectroscopy reveals oral Lactobacillus promotion of increases in brain GABA, N-acetyl aspartate and glutamate , 2016, NeuroImage.

[17]  J. Fox,et al.  Social stress-enhanced severity of Citrobacter rodentium induced colitis is CCL2-dependent and attenuated by probiotic Lactobacillus reuteri , 2015, Mucosal Immunology.

[18]  X. Wu,et al.  Administration of Lactobacillus helveticus NS8 improves behavioral, cognitive, and biochemical aberrations caused by chronic restraint stress , 2015, Neuroscience.

[19]  J. Rucklidge,et al.  Systematic review of evidence to support the theory of psychobiotics. , 2015, Nutrition reviews.

[20]  A. Fodor,et al.  Gut Microbial Dysbiosis Due to Helicobacter Drives an Increase in Marginal Zone B Cells in the Absence of IL-10 Signaling in Macrophages , 2015, The Journal of Immunology.

[21]  W. Yuan,et al.  Protective effects of bifidobacteria on intestines in newborn rats with necrotizing enterocolitis and its regulation on TLR2 and TLR4. , 2015, Genetics and molecular research : GMR.

[22]  R. Ismagilov,et al.  Indigenous Bacteria from the Gut Microbiota Regulate Host Serotonin Biosynthesis , 2015 .

[23]  L. Colzato,et al.  A randomized controlled trial to test the effect of multispecies probiotics on cognitive reactivity to sad mood , 2015, Brain, Behavior, and Immunity.

[24]  T. Dinan,et al.  Bifidobacteria modulate cognitive processes in an anxious mouse strain , 2015, Behavioural Brain Research.

[25]  S. Woods,et al.  PYY3 – 36: Beyond food intake , 2015, Frontiers in Neuroendocrinology.

[26]  M. Clerici Faculty Opinions recommendation of Structural and functional features of central nervous system lymphatic vessels. , 2015 .

[27]  I. Amit,et al.  Host microbiota constantly control maturation and function of microglia in the CNS , 2015, Nature Neuroscience.

[28]  J. Delgado-García,et al.  Effects of a human milk oligosaccharide, 2'-fucosyllactose, on hippocampal long-term potentiation and learning capabilities in rodents. , 2015, The Journal of nutritional biochemistry.

[29]  T. Dinan,et al.  Collective unconscious: how gut microbes shape human behavior. , 2015, Journal of psychiatric research.

[30]  H. Clevers,et al.  Microbiota Controls the Homeostasis of Glial Cells in the Gut Lamina Propria , 2015, Neuron.

[31]  G. Frost,et al.  The short chain fatty acid propionate stimulates GLP-1 and PYY secretion via free fatty acid receptor 2 in rodents , 2014, International Journal of Obesity.

[32]  John J. B. Allen,et al.  Increased association over time between regional frontal lobe BOLD change magnitude and cardiac vagal control with sertraline treatment for major depression , 2014, Psychiatry Research: Neuroimaging.

[33]  P. Cowen,et al.  Prebiotic intake reduces the waking cortisol response and alters emotional bias in healthy volunteers , 2014, Psychopharmacology.

[34]  R. Knight,et al.  Gut Microbes and the Brain: Paradigm Shift in Neuroscience , 2014, The Journal of Neuroscience.

[35]  D. Artis,et al.  Epigenomic regulation of host-microbiota interactions. , 2014, Trends in immunology.

[36]  T. Dinan,et al.  Bifidobacteria exert strain‐specific effects on stress‐related behavior and physiology in BALB/c mice , 2014, Neurogastroenterology and motility : the official journal of the European Gastrointestinal Motility Society.

[37]  Nicholas Chia,et al.  Diet and exercise orthogonally alter the gut microbiome and reveal independent associations with anxiety and cognition , 2014, Molecular Neurodegeneration.

[38]  M. Lynch,et al.  Modulation of Intestinal Microbiota by the Probiotic VSL#3 Resets Brain Gene Expression and Ameliorates the Age-Related Deficit in LTP , 2014, PloS one.

[39]  F. Bergquist,et al.  Dopamine signaling in the amygdala, increased by food ingestion and GLP-1, regulates feeding behavior , 2014, Physiology & Behavior.

[40]  G. Dockray Gastrointestinal hormones and the dialogue between gut and brain , 2014, The Journal of physiology.

[41]  Bas E Dutilh,et al.  Pharmacomicrobiomics: the impact of human microbiome variations on systems pharmacology and personalized therapeutics. , 2014, Omics : a journal of integrative biology.

[42]  T. Dinan,et al.  Selective influence of host microbiota on cAMP‐mediated ion transport in mouse colon , 2014, Neurogastroenterology and motility : the official journal of the European Gastrointestinal Motility Society.

[43]  A. Armario,et al.  High doses of the histone deacetylase inhibitor sodium butyrate trigger a stress-like response , 2014, Neuropharmacology.

[44]  W. Tao,et al.  Ingestion of Lactobacillus strain reduces anxiety and improves cognitive function in the hyperammonemia rat , 2014 .

[45]  J. Huizinga,et al.  Intestinal microbiota influence the early postnatal development of the enteric nervous system , 2014, Neurogastroenterology and motility : the official journal of the European Gastrointestinal Motility Society.

[46]  J. Cryan,et al.  Microbial genes, brain & behaviour – epigenetic regulation of the gut–brain axis , 2014, Genes, brain, and behavior.

[47]  Lawrence A. David,et al.  Diet rapidly and reproducibly alters the human gut microbiome , 2013, Nature.

[48]  Xu Hu,et al.  Ingestion of Lactobacillus strain reduces anxiety and improves cognitive function in the hyperammonemia rat , 2014, Science China Life Sciences.

[49]  J. Petrosino,et al.  Microbiota Modulate Behavioral and Physiological Abnormalities Associated with Neurodevelopmental Disorders , 2013, Cell.

[50]  G. Tzortzis,et al.  Prebiotic feeding elevates central brain derived neurotrophic factor, N-methyl-d-aspartate receptor subunits and d-serine , 2013, Neurochemistry International.

[51]  P. Cowen,et al.  Psychobiotics Highlight the Pathways to Happiness , 2013, Biological Psychiatry.

[52]  John F. Cryan,et al.  Psychobiotics: A Novel Class of Psychotropic , 2013, Biological Psychiatry.

[53]  T. Dinan,et al.  Antipsychotics and the gut microbiome: olanzapine-induced metabolic dysfunction is attenuated by antibiotic administration in the rat , 2013, Translational Psychiatry.

[54]  C. Ohland,et al.  Effects of Lactobacillus helveticus on murine behavior are dependent on diet and genotype and correlate with alterations in the gut microbiome , 2013, Psychoneuroendocrinology.

[55]  W. D. de Jonge,et al.  Lipid-rich enteral nutrition regulates mucosal mast cell activation via the vagal anti-inflammatory reflex. , 2013, American journal of physiology. Gastrointestinal and liver physiology.

[56]  F. Lotrich,et al.  Inflammatory cytokines in depression: Neurobiological mechanisms and therapeutic implications , 2013, Neuroscience.

[57]  W. Le,et al.  Galactooligosaccharide improves the animal survival and alleviates motor neuron death in SOD1G93A mouse model of amyotrophic lateral sclerosis , 2013, Neuroscience.

[58]  P. Bork,et al.  Richness of human gut microbiome correlates with metabolic markers , 2013, Nature.

[59]  T. Schwartz,et al.  GPR41/FFAR3 and GPR43/FFAR2 as cosensors for short-chain fatty acids in enteroendocrine cells vs FFAR3 in enteric neurons and FFAR2 in enteric leukocytes. , 2013, Endocrinology.

[60]  M. Bailey,et al.  Probiotic Lactobacillus reuteri Attenuates the Stressor-Enhanced Severity of Citrobacter rodentium Infection , 2013, Infection and Immunity.

[61]  S. Mazmanian,et al.  Innate immune recognition of the microbiota promotes host-microbial symbiosis , 2013, Nature Immunology.

[62]  M. Salami,et al.  Probiotics treatment improves diabetes-induced impairment of synaptic activity and cognitive function: Behavioral and electrophysiological proofs for microbiome–gut–brain axis , 2013, Neuroscience.

[63]  K. Okubo,et al.  Effects of Lactobacillus gasseri OLL2809 and α-lactalbumin on university-student athletes: a randomized, double-blind, placebo-controlled clinical trial. , 2013, Applied physiology, nutrition, and metabolism = Physiologie appliquee, nutrition et metabolisme.

[64]  S. Jenks,et al.  Ingestion of Mycobacterium vaccae decreases anxiety-related behavior and improves learning in mice , 2013, Behavioural Processes.

[65]  B. Naliboff,et al.  Consumption of fermented milk product with probiotic modulates brain activity. , 2013, Gastroenterology.

[66]  J. Foster,et al.  Gut–brain axis: how the microbiome influences anxiety and depression , 2013, Trends in Neurosciences.

[67]  Andrew H. Miller,et al.  CYTOKINE TARGETS IN THE BRAIN: IMPACT ON NEUROTRANSMITTERS AND NEUROCIRCUITS , 2013, Depression and anxiety.

[68]  J. Klein,et al.  Neuroprotective effects of lactate in brain ischemia: Dependence on anesthetic drugs , 2013, Neurochemistry International.

[69]  J. Foster,et al.  The microbiome is essential for normal gut intrinsic primary afferent neuron excitability in the mouse , 2013, Neurogastroenterology and motility : the official journal of the European Gastrointestinal Motility Society.

[70]  K. Kelley,et al.  Immune–neural connections: how the immune system’s response to infectious agents influences behavior , 2013, Journal of Experimental Biology.

[71]  S. Rampelli,et al.  A probiotics-containing biscuit modulates the intestinal microbiota in the elderly , 2013, The journal of nutrition, health & aging.

[72]  T. Dinan,et al.  Communication between gastrointestinal bacteria and the nervous system. , 2012, Current opinion in pharmacology.

[73]  M. Maes,et al.  Increased IgA and IgM responses against gut commensals in chronic depression: further evidence for increased bacterial translocation or leaky gut. , 2012, Journal of affective disorders.

[74]  V. Théodorou,et al.  Prevention of gut leakiness by a probiotic treatment leads to attenuated HPA response to an acute psychological stress in rats , 2012, Psychoneuroendocrinology.

[75]  T. Dinan,et al.  Mind-altering Microorganisms: the Impact of the Gut Microbiota on Brain and Behaviour , 2022 .

[76]  M. Blaser,et al.  Antibiotics in early life alter the murine colonic microbiome and adiposity , 2012, Nature.

[77]  X. Forns,et al.  Interferon-induced depression in chronic hepatitis C: a systematic review and meta-analysis. , 2012, The Journal of clinical psychiatry.

[78]  D. Sinderen,et al.  Gut microbiota composition correlates with diet and health in the elderly , 2012, Nature.

[79]  P. O’Toole,et al.  γ‐Aminobutyric acid production by culturable bacteria from the human intestine , 2012, Journal of applied microbiology.

[80]  W. Calame,et al.  Dietary galacto-oligosaccharides and calcium: effects on energy intake, fat-pad weight and satiety-related, gastrointestinal hormones in rats , 2012, British Journal of Nutrition.

[81]  M. Gareau,et al.  Probiotics are effective for the prevention and treatment of Citrobacter rodentium-induced colitis in mice. , 2012, The Journal of infectious diseases.

[82]  A. Macpherson,et al.  Interactions Between the Microbiota and the Immune System , 2012, Science.

[83]  A. Manatunga,et al.  Neurobehavioral Effects of Interferon-α in Patients with Hepatitis-C: Symptom Dimensions and Responsiveness to Paroxetine , 2012, Neuropsychopharmacology.

[84]  J. Clemente,et al.  Human gut microbiome viewed across age and geography , 2012, Nature.

[85]  T. Dinan,et al.  Gender-dependent consequences of chronic olanzapine in the rat: effects on body weight, inflammatory, metabolic and microbiota parameters , 2012, Psychopharmacology.

[86]  J. Quevedo,et al.  Behavioral and neurochemical effects of sodium butyrate in an animal model of mania , 2011, Behavioural pharmacology.

[87]  B. Berger,et al.  The anxiolytic effect of Bifidobacterium longum NCC3001 involves vagal pathways for gut–brain communication , 2011, Neurogastroenterology and motility : the official journal of the European Gastrointestinal Motility Society.

[88]  H. Raybould,et al.  Vagal afferent neurons in high fat diet-induced obesity; intestinal microflora, gut inflammation and cholecystokinin , 2011, Physiology & Behavior.

[89]  Bernard Henrissat,et al.  The Impact of a Consortium of Fermented Milk Strains on the Gut Microbiome of Gnotobiotic Mice and Monozygotic Twins , 2011, Science Translational Medicine.

[90]  John F. Cryan,et al.  Ingestion of Lactobacillus strain regulates emotional behavior and central GABA receptor expression in a mouse via the vagus nerve , 2011, Proceedings of the National Academy of Sciences.

[91]  Mark Lyte,et al.  Probiotics function mechanistically as delivery vehicles for neuroactive compounds: Microbial endocrinology in the design and use of probiotics , 2011, BioEssays : news and reviews in molecular, cellular and developmental biology.

[92]  K. McCoy,et al.  The intestinal microbiota affect central levels of brain-derived neurotropic factor and behavior in mice. , 2011, Gastroenterology.

[93]  M. Messaoudi,et al.  Beneficial psychological effects of a probiotic formulation (Lactobacillus helveticus R0052 and Bifidobacterium longum R0175) in healthy human volunteers , 2011, Gut microbes.

[94]  J. Gordon,et al.  Human nutrition, the gut microbiome and the immune system , 2011, Nature.

[95]  S. Salminen,et al.  Probiotic cheese containing Lactobacillus rhamnosus HN001 and Lactobacillus acidophilus NCFM® modifies subpopulations of fecal lactobacilli and Clostridium difficile in the elderly , 2011, AGE.

[96]  E. Mayer,et al.  The brain-gut axis in abdominal pain syndromes. , 2011, Annual review of medicine.

[97]  B. Stahl,et al.  Prebiotic oligosaccharides: In vitro evidence for gastrointestinal epithelial transfer and immunomodulatory properties , 2010, Pediatric allergy and immunology : official publication of the European Society of Pediatric Allergy and Immunology.

[98]  W. Jackson,et al.  Chronic gastrointestinal inflammation induces anxiety-like behavior and alters central nervous system biochemistry in mice. , 2010, Gastroenterology.

[99]  L. Desbonnet,et al.  Effects of the probiotic Bifidobacterium infantis in the maternal separation model of depression , 2010, Neuroscience.

[100]  M. Gareau,et al.  Lactobacillus rhamnosus GG attenuates interferon-{gamma} and tumour necrosis factor-alpha-induced barrier dysfunction and pro-inflammatory signalling. , 2010, Microbiology.

[101]  M. Messaoudi,et al.  Assessment of psychotropic-like properties of a probiotic formulation (Lactobacillus helveticus R0052 and Bifidobacterium longum R0175) in rats and human subjects , 2010, British Journal of Nutrition.

[102]  S. Massart,et al.  Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa , 2010, Proceedings of the National Academy of Sciences.

[103]  J. Doré,et al.  Intestinal Microbiota of 6-week-old Infants Across Europe: Geographic Influence Beyond Delivery Mode, Breast-feeding, and Antibiotics , 2010, Journal of pediatric gastroenterology and nutrition.

[104]  Marcus J. Claesson,et al.  Composition, variability, and temporal stability of the intestinal microbiota of the elderly , 2010, Proceedings of the National Academy of Sciences.

[105]  E. Murphy,et al.  Dietary prebiotics: current status and new definition , 2010 .

[106]  P. Bork,et al.  A human gut microbial gene catalogue established by metagenomic sequencing , 2010, Nature.

[107]  N. Herrmann,et al.  A Meta-Analysis of Cytokines in Major Depression , 2010, Biological Psychiatry.

[108]  W. Banks,et al.  The blood–brain barrier and immune function and dysfunction , 2010, Neurobiology of Disease.

[109]  C. Reardon,et al.  Probiotics prevent death caused by Citrobacter rodentium infection in neonatal mice. , 2010, The Journal of infectious diseases.

[110]  M. Gareau,et al.  Lactobacillus rhamnosus GG attenuates interferon-c and tumour necrosis factor-a-induced barrier dysfunction and pro-inflammatory signalling , 2010 .

[111]  Rob Knight,et al.  High-fat diet determines the composition of the murine gut microbiome independently of obesity. , 2009, Gastroenterology.

[112]  T. Dinan,et al.  Irritable bowel syndrome: towards biomarker identification. , 2009, Trends in molecular medicine.

[113]  Julian F. Thayer,et al.  Neural concomitants of immunity—Focus on the vagus nerve , 2009, NeuroImage.

[114]  P. Sansonetti,et al.  Learning Tolerance while Fighting Ignorance , 2009, Cell.

[115]  Paul Forsythe,et al.  Lactobacillus reuteri enhances excitability of colonic AH neurons by inhibiting calcium‐dependent potassium channel opening , 2009, Journal of cellular and molecular medicine.

[116]  J. Tsien,et al.  Memory and the NMDA receptors. , 2009, The New England journal of medicine.

[117]  W. R. Wikoff,et al.  Metabolomics analysis reveals large effects of gut microflora on mammalian blood metabolites , 2009, Proceedings of the National Academy of Sciences.

[118]  J. Huizinga,et al.  Lactobacillus reuteri ingestion prevents hyperexcitability of colonic DRG neurons induced by noxious stimuli. , 2009, American journal of physiology. Gastrointestinal and liver physiology.

[119]  L. Desbonnet,et al.  The probiotic Bifidobacteria infantis: An assessment of potential antidepressant properties in the rat. , 2008, Journal of psychiatric research.

[120]  K. Christian,et al.  BDNF: A key regulator for protein synthesis-dependent LTP and long-term memory? , 2008, Neurobiology of Learning and Memory.

[121]  M. Maes,et al.  The gut-brain barrier in major depression: intestinal mucosal dysfunction with an increased translocation of LPS from gram negative enterobacteria (leaky gut) plays a role in the inflammatory pathophysiology of depression. , 2008, Neuro endocrinology letters.

[122]  Keri Martinowich,et al.  Interaction between BDNF and Serotonin: Role in Mood Disorders , 2008, Neuropsychopharmacology.

[123]  J. Corander,et al.  The fecal microbiota of irritable bowel syndrome patients differs significantly from that of healthy subjects. , 2007, Gastroenterology.

[124]  P. Cowen,et al.  Increased waking salivary cortisol levels in young people at familial risk of depression. , 2007, The American journal of psychiatry.

[125]  G. MacQueen,et al.  Probiotic treatment of rat pups normalises corticosterone release and ameliorates colonic dysfunction induced by maternal separation , 2007, Gut.

[126]  Claire Williams,et al.  Impact of consuming a milk drink containing a probiotic on mood and cognition , 2007, European Journal of Clinical Nutrition.

[127]  K. Ressler,et al.  Hippocampus-specific deletion of BDNF in adult mice impairs spatial memory and extinction of aversive memories , 2007, Molecular Psychiatry.

[128]  E. Mardis,et al.  An obesity-associated gut microbiome with increased capacity for energy harvest , 2006, Nature.

[129]  C. Abraham,et al.  IFN-gamma-induced TNFR2 expression is required for TNF-dependent intestinal epithelial barrier dysfunction. , 2006, Gastroenterology.

[130]  David Mackey,et al.  MAMPs and MIMPs: proposed classifications for inducers of innate immunity , 2006, Molecular microbiology.

[131]  Jennifer C. Britton,et al.  Facial expressions and complex IAPS pictures: Common and differential networks , 2006, NeuroImage.

[132]  A. Fanning,et al.  Functional modulation of human intestinal epithelial cell responses by Bifidobacterium infantis and Lactobacillus salivarius , 2006, Immunology.

[133]  D. McKay,et al.  Probiotics prevent bacterial translocation and improve intestinal barrier function in rats following chronic psychological stress , 2006, Gut.

[134]  Mustafa M. Husain,et al.  Vagus Nerve Stimulation for Treatment-Resistant Depression: A Randomized, Controlled Acute Phase Trial , 2005, Biological Psychiatry.

[135]  P. Cowen,et al.  Increased salivary cortisol after waking in depression , 2005, Psychopharmacology.

[136]  Patrice D Cani,et al.  Oligofructose promotes satiety in rats fed a high-fat diet: involvement of glucagon-like Peptide-1. , 2005, Obesity research.

[137]  F. Shanahan,et al.  Lactobacillus and bifidobacterium in irritable bowel syndrome: symptom responses and relationship to cytokine profiles. , 2005, Gastroenterology.

[138]  W. V. Graham,et al.  Interferon-γ and Tumor Necrosis Factor-α Synergize to Induce Intestinal Epithelial Barrier Dysfunction by Up-Regulating Myosin Light Chain Kinase Expression , 2005 .

[139]  Lars Bode,et al.  Inhibition of monocyte, lymphocyte, and neutrophil adhesion to endothelial cells by human milk oligosaccharides , 2004, Thrombosis and Haemostasis.

[140]  Y. Chida,et al.  Postnatal microbial colonization programs the hypothalamic–pituitary–adrenal system for stress response in mice , 2004, The Journal of physiology.

[141]  O. M. A. Abdel Salam Fluoxetine and sertraline stimulate gastric acid secretion via a vagal pathway in anaesthetised rats. , 2004, Pharmacological research.

[142]  W. Hao Stress and intestinal barrier function , 2002 .

[143]  Cole A. Giller,et al.  Vagus Nerve Stimulation (VNS™) for Treatment-Resistant Depression: Efficacy, Side Effects, and Predictors of Outcome , 2001, Neuropsychopharmacology.

[144]  M. Coughlin,et al.  Long‐Term Treatment with Vagus Nerve Stimulation in Patients with Refractory Epilepsy , 2001 .

[145]  J. Sugawara,et al.  Change in post-exercise vagal reactivation with exercise training and detraining in young men , 2001, European Journal of Applied Physiology.

[146]  E. Katkin,et al.  Vagal Rebound and Recovery From Psychological Stress , 2001, Psychosomatic medicine.

[147]  J. Söderholm,et al.  Role of mast cells in chronic stress induced colonic epithelial barrier dysfunction in the rat , 2001, Gut.

[148]  A. Blomqvist,et al.  Inflammatory response: Pathway across the blood–brain barrier , 2001, Nature.

[149]  J. Söderholm,et al.  Stress and gastrointestinal tract. II. Stress and intestinal barrier function. , 2001, American journal of physiology. Gastrointestinal and liver physiology.

[150]  E. Isolauri,et al.  Interleukin‐10 generation in atopic children following oral Lactobacillus rhamnosus GG , 2000, Clinical and experimental allergy : journal of the British Society for Allergy and Clinical Immunology.

[151]  H. Handwerker,et al.  Left vagus nerve stimulation suppresses experimentally induced pain , 2000, Neurology.

[152]  K. Tracey,et al.  Vagus nerve stimulation attenuates the systemic inflammatory response to endotoxin , 2000, Nature.

[153]  B. Hatfield,et al.  Vagal and cardiac reactivity to psychological stressors in trained and untrained men. , 2000, Medicine and science in sports and exercise.

[154]  R. Satokari,et al.  Persistence of Colonization of Human Colonic Mucosa by a Probiotic Strain, Lactobacillus rhamnosusGG, after Oral Consumption , 1999, Applied and Environmental Microbiology.

[155]  J. Bigger,et al.  Physical fitness as a determinant of vagal modulation. , 1997, Medicine and science in sports and exercise.

[156]  J. Kuiper,et al.  The influence of cytokines on the integrity of the blood-brain barrier in vitro , 1996, Journal of Neuroimmunology.

[157]  M. Linnoila,et al.  Vagal tone decreases following intravenous diazepam , 1992, Psychiatry Research.

[158]  A. Beck Cognitive therapy and the emotional disorders: A. T. Beck , 1987, British Journal of Psychiatry.