Lutidine/B(C6F5)3: at the boundary of classical and frustrated Lewis pair reactivity.

Classical Lewis acid-base adducts, previously thought to be unreactive, can provide access to the unique reactivity of frustrated Lewis pairs. This was demonstrated with a mixture of 2,6-lutidine and B(C(6)F(5))(3) where an equilibrium affords the adduct and yet also effects the heterolytic activation of H(2) and the ring opening of THF.

[1]  D. Stephan,et al.  B-H activation by frustrated Lewis pairs: borenium or boryl phosphonium cation? , 2008, Chemical communications.

[2]  N. C. Norman,et al.  Lewis base adducts of diboron compounds: molecular structures of [B2(cat)2(4-picoline)] and B2(cat)2(4-picoline)2](cat = 1.2-O2C6H4) , 1995 .

[3]  M. Leskelä,et al.  Facile heterolytic H2 activation by amines and B(C6F5)3. , 2008, Angewandte Chemie.

[4]  Preston A. Chase,et al.  Lewis acid-catalyzed hydrogenation: B(C6F5)3-mediated reduction of imines and nitriles with H2. , 2008, Chemical communications.

[5]  H. Brown,et al.  Studies in Stereochemistry. I. Steric Strains as a Factor in the Relative Stability of Some Coördination Compounds of Boron , 1942 .

[6]  Gregory C. Welch,et al.  Facile heterolytic cleavage of dihydrogen by phosphines and boranes. , 2007, Journal of the American Chemical Society.

[7]  G. Wittig,et al.  Über Komplexbildung mit Triphenyl-bor (III. Mitt) , 1950 .

[8]  R. Fröhlich,et al.  Metal-free catalytic hydrogenation of enamines, imines, and conjugated phosphinoalkenylboranes. , 2008, Angewandte Chemie.

[9]  A. Sironi,et al.  Complexes of tris(pentafluorophenyl)boron with nitrogen-containing compounds: Synthesis, reactivity and metallocene activation , 2006 .

[10]  Preston A. Chase,et al.  Hydrogen and amine activation by a frustrated Lewis pair of a bulky N-heterocyclic carbene and B(C6F5)3. , 2008, Angewandte Chemie.

[11]  Martin Nieger,et al.  Molecular tweezers for hydrogen: synthesis, characterization, and reactivity. , 2008, Journal of the American Chemical Society.

[12]  G. Bertrand,et al.  Facile Splitting of Hydrogen and Ammonia by Nucleophilic Activation at a Single Carbon Center , 2007, Science.

[13]  Jason D. Masuda,et al.  Tuning Lewis acidity using the reactivity of "frustrated Lewis pairs": facile formation of phosphine-boranes and cationic phosphonium-boranes. , 2007, Dalton transactions.

[14]  Douglas W Stephan,et al.  "Frustrated Lewis pairs": a concept for new reactivity and catalysis. , 2008, Organic & biomolecular chemistry.

[15]  R. Fröhlich,et al.  Rapid intramolecular heterolytic dihydrogen activation by a four-membered heterocyclic phosphane-borane adduct. , 2007, Chemical communications.

[16]  Cristian G. Hrib,et al.  Heterolytic dihydrogen activation by a frustrated carbene-borane Lewis pair. , 2008, Angewandte Chemie.

[17]  Thomas J. Richardson,et al.  Unconventional Hydrogen Bonds: Intermolecular B-H.cntdot..cntdot..cntdot.H-N Interactions , 1995 .

[18]  Gregory C. Welch,et al.  Reactions of phosphines with electron deficient boranes. , 2009, Dalton transactions.

[19]  Preston A. Chase,et al.  Metal-free catalytic hydrogenation. , 2007, Angewandte Chemie.

[20]  R. Fröhlich,et al.  Heterolytic dihydrogen activation with the 1,8-bis(diphenylphosphino)naphthalene/B(C6F5)3 pair and its application for metal-free catalytic hydrogenation of silyl enol ethers. , 2008, Chemical communications.

[21]  M. Ullrich,et al.  Reversible, metal-free, heterolytic activation of H2 at room temperature. , 2009, Journal of the American Chemical Society.

[22]  Jason D. Masuda,et al.  Reversible, Metal-Free Hydrogen Activation , 2006, Science.

[23]  W. Piers The Chemistry of Perfluoroaryl Boranes , 2005 .

[24]  Gregory C. Welch,et al.  Reactivity of "frustrated Lewis pairs": three-component reactions of phosphines, a borane, and olefins. , 2007, Angewandte Chemie.