500 days of SN 2013dy: Spectra and photometry from the ultraviolet to the infrared

SN 2013dy is a Type Ia supernova (SN Ia) for which we have compiled an extraordinary data set spanning from 0.1 to similar to 500 d after explosion. We present 10 epochs of ultraviolet (UV) through ...

[1]  G. Rauw,et al.  Time series of high-resolution spectra of SN 2014J observed with the TIGRE telescope , 2015, 1506.00938.

[2]  A. Filippenko,et al.  High-velocity features of calcium and silicon in the spectra of Type Ia supernovae , 2015, 1502.07278.

[3]  W. Kausch,et al.  Molecfit: A general tool for telluric absorption correction - I. Method and application to ESO instruments , 2015, 1501.07239.

[4]  E. Ofek,et al.  The rising light curves of Type Ia supernovae , 2014, 1411.1064.

[5]  I. Hook,et al.  Type Ia supernova spectral features in the context of their host galaxy properties , 2014, 1410.0091.

[6]  Wei Zheng,et al.  Twins for life? A comparative analysis of the Type Ia supernovae 2011fe and 2011by , 2014, 1408.2651.

[7]  B. J. Fulton,et al.  TIME-VARYING POTASSIUM IN HIGH-RESOLUTION SPECTRA OF THE TYPE IA SUPERNOVA 2014J , 2014, 1412.0653.

[8]  Peter E. Nugent,et al.  Exploring the spectral diversity of low-redshift Type Ia supernovae using the Palomar Transient Factory , 2014, 1408.1430.

[9]  J. Bochanski,et al.  EARLY OBSERVATIONS AND ANALYSIS OF THE TYPE Ia SN 2014J IN M82 , 2014, 1405.3970.

[10]  W. Hillebrandt,et al.  Extensive HST ultraviolet spectra and multiwavelength observations of SN 2014J in M82 indicate reddening and circumstellar scattering by typical dust , 2014, 1405.3677.

[11]  Wendy L. Freedman,et al.  THE CARNEGIE SUPERNOVA PROJECT: INTRINSIC COLORS OF TYPE Ia SUPERNOVAE , 2014, 1405.3934.

[12]  D. York,et al.  DIFFUSE INTERSTELLAR BANDS VERSUS KNOWN ATOMIC AND MOLECULAR SPECIES IN THE INTERSTELLAR MEDIUM OF M82 TOWARD SN 2014J , 2014, 1404.2639.

[13]  P. E. Nugent,et al.  THE PECULIAR EXTINCTION LAW OF SN 2014J MEASURED WITH THE HUBBLE SPACE TELESCOPE , 2014, 1404.2595.

[14]  S. B. Cenko,et al.  THE RISE OF SN 2014J IN THE NEARBY GALAXY M82 , 2014 .

[15]  E. Ofek,et al.  The rise of SN2014J in the nearby galaxy M82 , 2014, 1402.0849.

[16]  Wei Zheng,et al.  ESTIMATING THE FIRST-LIGHT TIME OF THE TYPE IA SUPERNOVA 2014J IN M82 , 2014, 1401.7968.

[17]  Filippo Mannucci,et al.  Observational Clues to the Progenitors of Type Ia Supernovae , 2013, 1312.0628.

[18]  I. Hook,et al.  The host galaxies of Type Ia supernovae discovered by the Palomar Transient Factory , 2013, 1311.6344.

[19]  R. Foley,et al.  Multi-epoch high-spectral-resolution observations of neutral sodium in 14 Type Ia supernovae , 2013, 1311.3645.

[20]  W. Hillebrandt,et al.  Three-dimensional pure deflagration models with nucleosynthesis and synthetic observables for type ia supernovae , 2013, 1308.3257.

[21]  D. A. García-Hernández,et al.  THE TENTH DATA RELEASE OF THE SLOAN DIGITAL SKY SURVEY: FIRST SPECTROSCOPIC DATA FROM THE SDSS-III APACHE POINT OBSERVATORY GALACTIC EVOLUTION EXPERIMENT , 2013, 1307.7735.

[22]  Mohan Ganeshalingam,et al.  High-velocity features in Type Ia supernova spectra , 2013, 1307.0563.

[23]  K. Maguire,et al.  Hubble Space Telescope spectra of the type Ia supernova SN 2011fe: a tail of low-density, high-velocity material with Z < Z⊙ , 2013, 1305.2356.

[24]  Wendy L. Freedman,et al.  ON THE SOURCE OF THE DUST EXTINCTION IN TYPE Ia SUPERNOVAE AND THE DISCOVERY OF ANOMALOUSLY STRONG Na i ABSORPTION , 2013, 1311.0147.

[25]  Wei Zheng,et al.  THE VERY YOUNG TYPE Ia SUPERNOVA 2013dy: DISCOVERY, AND STRONG CARBON ABSORPTION IN EARLY-TIME SPECTRA , 2013, 1310.5188.

[26]  W. Hillebrandt,et al.  Synthetic light curves and spectra for three-dimensional delayed-detonation models of Type Ia supernovae , 2013, 1308.4833.

[27]  E. Ofek,et al.  A statistical analysis of circumstellar material in type Ia supernovae , 2013, 1308.3899.

[28]  C. Tao,et al.  HOST GALAXY PROPERTIES AND HUBBLE RESIDUALS OF TYPE Ia SUPERNOVAE FROM THE NEARBY SUPERNOVA FACTORY , 2013, 1304.4720.

[29]  W. Hillebrandt,et al.  Towards an understanding of Type Ia supernovae from a synthesis of theory and observations , 2013, 1302.6420.

[30]  R. Kirshner,et al.  METALLICITY DIFFERENCES IN TYPE Ia SUPERNOVA PROGENITORS INFERRED FROM ULTRAVIOLET SPECTRA , 2013, 1302.4479.

[31]  P. Brown,et al.  HIGH-VELOCITY LINE FORMING REGIONS IN THE TYPE Ia SUPERNOVA 2009ig , 2013, 1302.3537.

[32]  Daniel J. Carson,et al.  SPECTROSCOPIC OBSERVATIONS OF SN 2012fr: A LUMINOUS, NORMAL TYPE Ia SUPERNOVA WITH EARLY HIGH-VELOCITY FEATURES AND A LATE VELOCITY PLATEAU , 2013, 1302.2926.

[33]  C. Tao,et al.  Spectrophotometric time series of SN 2011fe from the Nearby Supernova Factory , 2013, 1302.1292.

[34]  R. Cid Fernandes,et al.  THE EVOLUTION OF GALAXIES RESOLVED IN SPACE AND TIME: A VIEW OF INSIDE-OUT GROWTH FROM THE CALIFA SURVEY , 2013 .

[35]  R. Foley,et al.  On spectral line profiles in Type Ia supernova spectra , 2012, 1212.6261.

[36]  Stuart A. Sim,et al.  Three-dimensional delayed-detonation models with nucleosynthesis for Type Ia supernovae , 2012, 1211.3015.

[37]  R. Nichol,et al.  SN Ia host galaxy properties from Sloan Digital Sky Survey-II spectroscopy , 2012, 1211.1386.

[38]  A. Filippenko,et al.  Berkeley Supernova Ia Program – V. Late-time spectra of Type Ia Supernovae , 2012, 1211.0279.

[39]  W. Hillebrandt,et al.  3D deflagration simulations leaving bound remnants: a model for 2002cx-like Type Ia supernovae , 2012, 1210.5243.

[40]  U. Munari,et al.  BVRI lightcurves of supernovae SN 2011fe in M101, SN 2012aw in M95, and SN 2012cg in NGC 4424 , 2012, 1209.4692.

[41]  E. Ofek,et al.  The UV/optical spectra of the Type Ia supernova SN 2010jn: a bright supernova with outer layers rich in iron-group elements , 2012, 1208.1267.

[42]  R. Kotak,et al.  Multi-epoch high-resolution spectroscopy of SN 2011fe - Linking the progenitor to its environment , 2011, 1112.0247.

[43]  S. E. Persson,et al.  TYPE Iax SUPERNOVAE: A NEW CLASS OF STELLAR EXPLOSION , 2012, 1212.2209.

[44]  M. Sullivan,et al.  Studying the diversity of Type Ia supernovae in the ultraviolet: comparing models with observations , 2012, 1208.4130.

[45]  F. Timmes,et al.  EVALUATING SYSTEMATIC DEPENDENCIES OF TYPE Ia SUPERNOVAE: THE INFLUENCE OF CENTRAL DENSITY , 2012, 1208.1986.

[46]  W. M. Wood-Vasey,et al.  THE NINTH DATA RELEASE OF THE SLOAN DIGITAL SKY SURVEY: FIRST SPECTROSCOPIC DATA FROM THE SDSS-III BARYON OSCILLATION SPECTROSCOPIC SURVEY , 2012, 1207.7137.

[47]  M. Sullivan,et al.  PTF 11kx: A Type Ia Supernova with a Symbiotic Nova Progenitor , 2012, Science.

[48]  M. Graham,et al.  THE VERY YOUNG TYPE Ia SUPERNOVA 2012cg: DISCOVERY AND EARLY-TIME FOLLOW-UP OBSERVATIONS , 2012, 1206.1328.

[49]  R. Ellis,et al.  Hubble Space Telescope studies of low‐redshift Type Ia supernovae: evolution with redshift and ultraviolet spectral trends , 2012, 1205.7040.

[50]  V. Stanishev,et al.  Type Ia supernova host galaxies as seen with IFU spectroscopy , 2012, 1205.5183.

[51]  W. M. Wood-Vasey,et al.  THE INFRARED LIGHT CURVE OF SN 2011fe IN M101 AND THE DISTANCE TO M101 , 2012, 1205.3828.

[52]  A. Gal-yam,et al.  WISeREP—An Interactive Supernova Data Repository , 2012, 1204.1891.

[53]  M. Richmond,et al.  BVRI Photometry of SN 2011fe in M101 , 2012, 1203.4013.

[54]  R. Kirshner,et al.  THE FIRST MAXIMUM-LIGHT ULTRAVIOLET THROUGH NEAR-INFRARED SPECTRUM OF A TYPE Ia SUPERNOVA, , 2012, 1202.5301.

[55]  L. Ho,et al.  Berkeley Supernova Ia Program – I. Observations, data reduction and spectroscopic sample of 582 low-redshift Type Ia supernovae , 2012, 1202.2128.

[56]  Nathaniel R. Butler,et al.  Exclusion of a luminous red giant as a companion star to the progenitor of supernova SN 2011fe , 2011, Nature.

[57]  Nathaniel R. Butler,et al.  A COMPACT DEGENERATE PRIMARY-STAR PROGENITOR OF SN 2011fe , 2011, 1111.0966.

[58]  Federica B. Bianco,et al.  Supernova SN 2011fe from an exploding carbon–oxygen white dwarf star , 2011, Nature.

[59]  R. Nichol,et al.  SPECTROSCOPIC PROPERTIES OF STAR-FORMING HOST GALAXIES AND TYPE Ia SUPERNOVA HUBBLE RESIDUALS IN A NEARLY UNBIASED SAMPLE , 2011, 1110.5517.

[60]  R. Beaton,et al.  VERY EARLY ULTRAVIOLET AND OPTICAL OBSERVATIONS OF THE TYPE Ia SUPERNOVA 2009ig , 2011, 1109.0987.

[61]  R. M. Quimby,et al.  Circumstellar Material in Type Ia Supernovae via Sodium Absorption Features , 2011, Science.

[62]  Douglas P. Finkbeiner,et al.  MEASURING REDDENING WITH SLOAN DIGITAL SKY SURVEY STELLAR SPECTRA AND RECALIBRATING SFD , 2010, 1012.4804.

[63]  Pieter Degroote,et al.  HERMES: a high-resolution fibre-fed spectrograph for the Mercator telescope , 2010, 1011.0258.

[64]  Wendy L. Freedman,et al.  THE CARNEGIE SUPERNOVA PROJECT: LIGHT-CURVE FITTING WITH SNooPy , 2010, 1010.4040.

[65]  T. Pritchard,et al.  RESULTS OF THE LICK OBSERVATORY SUPERNOVA SEARCH FOLLOW-UP PHOTOMETRY PROGRAM: BVRI LIGHT CURVES OF 165 TYPE Ia SUPERNOVAE , 2010 .

[66]  D. Branch,et al.  Studying the small scale ISM structure with supernovae , 2010, 1003.0778.

[67]  R. Nichol,et al.  THE RISE AND FALL OF TYPE Ia SUPERNOVA LIGHT CURVES IN THE SDSS-II SUPERNOVA SURVEY , 2010, 1001.3428.

[68]  Michael Wegner,et al.  Ground-based and Airborne Instrumentation for Astronomy III , 2010 .

[69]  M. Asplund,et al.  The chemical composition of the Sun , 2009, 0909.0948.

[70]  R. P. Butler,et al.  VARIABLE SODIUM ABSORPTION IN A LOW-EXTINCTION TYPE Ia SUPERNOVA, , 2009, 0907.1083.

[71]  S. E. Woosley,et al.  The diversity of type Ia supernovae from broken symmetries , 2009, Nature.

[72]  M. Kromer,et al.  Time-dependent three-dimensional spectrum synthesis for Type Ia supernovae , 2009, 0906.3152.

[73]  Kevin Krisciunas,et al.  THE CARNEGIE SUPERNOVA PROJECT: ANALYSIS OF THE FIRST SAMPLE OF LOW-REDSHIFT TYPE-Ia SUPERNOVAE , 2009, 0910.3317.

[74]  H. Courtois,et al.  THE EXTRAGALACTIC DISTANCE DATABASE , 2009, 0902.3668.

[75]  Elisabeth Hoppe,et al.  EUROPEAN ORGANISATION FOR ASTRONOMICAL RESEARCH IN THE SOUTHERN HEMISPHERE , 2009 .

[76]  S. Jha,et al.  Luminosity Indicators in the Ultraviolet Spectra of Type Ia Supernovae , 2008, 0803.1181.

[77]  L. Pasquini,et al.  Upper limit for circumstellar gas around the type Ia SN 2000cx , 2007, 0708.3698.

[78]  Kevin Krisciunas,et al.  Optical and Near-Infrared Observations of the Highly Reddened, Rapidly Expanding Type Ia Supernova SN 2006X in M100 , 2007, 0708.0140.

[79]  M. Sullivan,et al.  K-Corrections and Spectral Templates of Type Ia Supernovae , 2007, astro-ph/0703529.

[80]  S. E. Persson,et al.  The Peculiar SN 2005hk: Do Some Type Ia Supernovae Explode as Deflagrations? , 2006, astro-ph/0611295.

[81]  C. Flynn,et al.  On the mass-to-light ratio of the local Galactic disc and the optical luminosity of the Galaxy , 2006, astro-ph/0608193.

[82]  J. Prieto,et al.  A New Method to Calibrate the Magnitudes of Type Ia Supernovae at Maximum Light , 2006, astro-ph/0603407.

[83]  M. Skrutskie,et al.  The Two Micron All Sky Survey (2MASS) , 2006 .

[84]  G. Weidenspointner,et al.  Radioactive 26Al from massive stars in the Galaxy , 2006, Nature.

[85]  Armin Rest,et al.  Photometry of the Type Ia Supernovae 1999cc, 1999cl, and 2000cf , 2005, astro-ph/0511162.

[86]  S. Jha,et al.  Chemistry and Star Formation in the Host Galaxies of Type Ia Supernovae , 2005, astro-ph/0508180.

[87]  D. Branch,et al.  Comparative Direct Analysis of Type Ia Supernova Spectra. I. SN 1994D , 2005, 0712.2436.

[88]  R. Kotak,et al.  The Diversity of Type Ia Supernovae: Evidence for Systematics? , 2004, astro-ph/0411059.

[89]  M. Stritzinger,et al.  Lower limits on the Hubble constant from models of type Ia supernovae , 2004, astro-ph/0410686.

[90]  J. Brinkmann,et al.  The Origin of the Mass-Metallicity Relation: Insights from 53,000 Star-forming Galaxies in the Sloan Digital Sky Survey , 2004, astro-ph/0405537.

[91]  R. Foley,et al.  Optical Photometry and Spectroscopy of the SN 1998bw–like Type Ic Supernova 2002ap , 2003, astro-ph/0307136.

[92]  F. Timmes,et al.  TO APPEAR IN THE ASTROPHYSICAL JOURNAL LETTERS Preprint typeset using LATEX style emulateapj v. 3/3/03 ON VARIATIONS IN THE PEAK LUMINOSITY OF TYPE IA SUPERNOVAE , 2003 .

[93]  Alison L. Coil,et al.  The DEIMOS spectrograph for the Keck II Telescope: integration and testing , 2003, SPIE Astronomical Telescopes + Instrumentation.

[94]  A. Moorwood,et al.  Instrument Design and Performance for Optical/Infrared Ground-based Telescopes, , 2003 .

[95]  D. Borgne,et al.  Photometric redshifts from evolutionary synthesis with PÉGASE: The code Z-PEG and the z=0 age constraint , 2002, astro-ph/0202359.

[96]  Carlos Allende Prieto,et al.  The Forbidden Abundance of Oxygen in the Sun , 2001, astro-ph/0106360.

[97]  A. Filippenko,et al.  Spectropolarimetry of the Type II Supernovae 1997ds, 1998A, and 1999gi , 2001, astro-ph/0105295.

[98]  W. Hillebrandt,et al.  Type IA Supernova Explosion Models , 2000, astro-ph/0006305.

[99]  P. Nugent,et al.  Metallicity Effects in Non-LTE Model Atmospheres of Type Ia Supernovae , 1999, astro-ph/9906016.

[100]  P. Nugent,et al.  Metallicity Effects in NLTE Model Atmospheres of Type IA Supernovae , 1999 .

[101]  van der Thijs Hulst,et al.  NEW VIEWS OF THE MAGELLANIC CLOUDS , 1999 .

[102]  I. Hook,et al.  Measurements of Ω and Λ from 42 High-Redshift Supernovae , 1998, astro-ph/9812133.

[103]  D. Schlegel,et al.  Maps of Dust Infrared Emission for Use in Estimation of Reddening and Cosmic Microwave Background Radiation Foregrounds , 1998 .

[104]  A. Riess,et al.  Observational Evidence from Supernovae for an Accelerating Universe and a Cosmological Constant , 1998, astro-ph/9805201.

[105]  J. Wheeler,et al.  Type Ia Supernovae: Influence of the Initial Composition on the Nucleosynthesis, Light Curves, and Spectra and Consequences for the Determination of ΩM and Λ , 1997, astro-ph/9709233.

[106]  N. Vogt,et al.  The Nature of Compact Galaxies in the Hubble Deep Field. II. Spectroscopic Properties and Implications for the Evolution of the Star Formation Rate Density of the Universe , 1997, astro-ph/9704001.

[107]  P. Podsiadlowski,et al.  The C-flash and the ignition conditions of type Ia , 2006, astro-ph/0601443.

[108]  R. Smith,et al.  The morphology of type ia supernovae light curves , 1996, astro-ph/9609063.

[109]  Harland W. Epps,et al.  THE KECK LOW-RESOLUTION IMAGING SPECTROMETER , 1995 .

[110]  M. Phillips,et al.  The Absolute Magnitudes of Type IA Supernovae , 1993 .

[111]  J. Mathis,et al.  The relationship between infrared, optical, and ultraviolet extinction , 1989 .

[112]  R. Wade,et al.  The Radial Velocity Curve and Peculiar TiO Distribution of the Red Secondary Star in Z Chamaeleontis , 1988 .

[113]  P. Stetson DAOPHOT: A COMPUTER PROGRAM FOR CROWDED-FIELD STELLAR PHOTOMETRY , 1987 .

[114]  D. Branch,et al.  On the ultraviolet spectra of Type I supernovae , 1986 .

[115]  K. Horne,et al.  AN OPTIMAL EXTRACTION ALGORITHM FOR CCD SPECTROSCOPY. , 1986 .

[116]  K. Nomoto,et al.  Accreting white dwarf models for type I supernovae. III. Carbon deflagration supernovae , 1984 .

[117]  W. Arnett Type I supernovae. I. Analytic solutions for the early part of the light curve , 1982 .

[118]  W. Arnett On the theory of type I supernovae. , 1979 .

[119]  A. Savitzky,et al.  Smoothing and Differentiation of Data by Simplified Least Squares Procedures. , 1964 .

[120]  E. Salpeter The Luminosity function and stellar evolution , 1955 .