Post-buckling analysis of nonlinear shear-deformable prismatic columns using a GBT consistent energy formulation

Abstract The post-buckling analysis of shear-deformable prismatic columns under uniform compression is studied using the Generalized Beam Theory. The member’s deformed shape is described by a linear combination of three modes of deformation: axial elongation, bending and the shear deformation. The total potential energy is computed, based on the relevant relations of the theory of elasticity, and is rendered discrete through the Rayleigh-Ritz method. The buckling behaviours of the pinned-pinned columns are validated by comparison with available critical load formulae. The post-buckling behaviours, for three representative lengths, are computed by searching nontrivial equilibrium points in the neighbourhood of the critical state. The results, described by the load-displacement plots of the equilibrium paths, are symmetric and stable. Furthermore, the stability of the post-buckling paths, measured by the magnitude of their concavity in the neighbourhood of the critical state, increases with increasing values of cross section shear stiffness and of the member’s length.

[1]  Eric M. Lui,et al.  Structural Stability: Theory and Implementation , 1987 .

[2]  Ana M. Girão Coelho,et al.  Imperfection sensitivity of column instability revisited , 2013 .

[3]  J. Thompson,et al.  Elastic Instability Phenomena , 1984 .

[4]  Huu‐Tai Thai,et al.  A nonlocal beam theory for bending, buckling, and vibration of nanobeams , 2012 .

[5]  J. V. Huddleston Effect of shear deformation on the elastica with axial strain , 1972 .

[6]  J. D. Aristizabal-Ochoa Stability of columns with semi-rigid connections including shear effects using Engesser, Haringx and Euler approaches , 2011 .

[7]  E. Carrera,et al.  Refined beam theories based on a unified formulation , 2010 .

[8]  Jürg Von Nänni,et al.  Das Eulersche Knickproblem unter Berücksichtigung der Querkräfte , 1971 .

[9]  Long-Yuan Li,et al.  Theory of Elastic Stability: Analysis and Sensitivity , 1999 .

[10]  O. Giraldo-Londoño,et al.  Large-deflection and postbuckling of beam-columns with non-linear semi-rigid connections including shear and axial effects , 2015 .

[11]  M. Levinson,et al.  A new rectangular beam theory , 1981 .

[12]  R. Schardt Verallgemeinerte Technische Biegetheorie , 1989 .

[13]  J. Blaauwendraad Shear in Structural Stability: On the Engesser–Haringx Discord , 2010 .

[15]  Michel Grédiac,et al.  Closed-form solution for the cross-section warping in short beams under three-point bending , 2001 .

[16]  Giles W Hunt,et al.  A general theory of elastic stability , 1973 .

[17]  G. Cowper The Shear Coefficient in Timoshenko’s Beam Theory , 1966 .

[18]  Fernando Pedro Simões da Silva Dias Simão,et al.  Post-buckling bifurcational analysis of thin-walled prismatic members in the context of the generalized beam theory , 2007 .

[19]  S. Timoshenko,et al.  LXVI. On the correction for shear of the differential equation for transverse vibrations of prismatic bars , 1921 .

[20]  H. Ziegler,et al.  Arguments for and against Engesser's buckling formulas , 1982 .

[21]  R. E. Brown,et al.  On the use of polynomial series with the Rayleigh-Ritz method , 1997 .

[22]  Mario M. Attard,et al.  Column buckling with shear deformations—A hyperelastic formulation , 2008 .

[23]  Mario M. Attard,et al.  Dynamic stability of shear-flexible beck's columns based on Engesser's and Haringx's buckling theories , 2008 .

[24]  M. Petyt,et al.  Energy methods in stress analysis , 1979 .

[25]  A. Humer Exact solutions for the buckling and postbuckling of shear-deformable beams , 2013 .

[26]  V. Silva,et al.  Mechanics and Strength of Materials , 2005 .

[27]  Sébastien Mistou,et al.  Mechanical behaviour of laminated composite beam by the new multi-layered laminated composite structures model with transverse shear stress continuity , 2003 .

[28]  S. Timoshenko,et al.  X. On the transverse vibrations of bars of uniform cross-section , 1922 .

[29]  Cv Clemens Verhoosel,et al.  Non-Linear Finite Element Analysis of Solids and Structures , 1991 .

[30]  Huu-Tai Thai,et al.  Vibration and buckling of composite beams using refined shear deformation theory , 2012 .

[31]  M. Touratier,et al.  An efficient standard plate theory , 1991 .

[32]  The Effect Of Shear Deformation On The Critical Buckling Of Columns , 1994 .

[33]  E. Carrera,et al.  Refined beam elements with arbitrary cross-section geometries , 2010 .

[34]  Frans S.K. Bijlaard,et al.  Influence of splices on the buckling of columns , 2012 .

[35]  G. Voyiadjis,et al.  A Sixth-Order Theory of Shear Deformable Beams With Variational Consistent Boundary Conditions , 2011 .

[36]  Pedro D. Simão,et al.  Influence of shear deformations on the buckling of columns using the Generalized Beam Theory and energy principles , 2017 .

[37]  J. Dario Aristizabal-Ochoa Stability of imperfect columns with nonlinear connections under eccentric axial loads including shear effects , 2015 .

[38]  Atle Gjelsvik,et al.  Buckling of Built‐Up Columns with or without stay plates , 1990 .

[39]  Giles W Hunt,et al.  On truncation of the structural potential function , 1984 .

[40]  A. Gjelsvik Stability of Built-up Columns , 1991 .

[41]  C. Wang,et al.  Buckling of multiwalled carbon nanotubes using timoshenko beam theory , 2006 .

[42]  F. Auricchio,et al.  Single-variable formulations and isogeometric discretizations for shear deformable beams , 2015 .

[43]  Erasmo Carrera,et al.  Large-deflection and post-buckling analyses of laminated composite beams by Carrera Unified Formulation , 2017 .

[44]  Johan Blaauwendraad Timoshenko beam–column buckling. Does Dario stand the test? , 2008 .

[45]  H. Langhaar Energy Methods in Applied Mechanics , 1962 .

[46]  J. Reddy,et al.  A higher order beam finite element for bending and vibration problems , 1988 .

[47]  Y. Fung Foundations of solid mechanics , 1965 .

[48]  E. Reissner On one-dimensional finite-strain beam theory: The plane problem , 1972 .

[49]  Gaetano Giunta,et al.  Beam Structures: Classical and Advanced Theories , 2011 .

[50]  Frans S.K. Bijlaard,et al.  Stability design criteria for steel column splices , 2010 .

[51]  A. Waas,et al.  Postcritical imperfection sensitivity of sandwich or homogenized orthotropic columns soft in shear and in transverse deformation , 2006 .

[52]  Samir A. Emam Analysis of shear-deformable composite beams in postbuckling , 2011 .

[53]  C. Polizzotto From the Euler–Bernoulli beam to the Timoshenko one through a sequence of Reddy-type shear deformable beam models of increasing order , 2015 .

[54]  M. Levinson Consistent and Inconsistent Higher Order Beam and Plate Theories: Some Surprising Comparisons , 1987 .

[55]  James M. Kelly,et al.  Finite element analysis of the stability of multilayer elastomeric bearings , 1984 .

[56]  J. Dario Aristizabal-Ochoa,et al.  Large deflection and postbuckling behavior of Timoshenko beam-columns with semi-rigid connections including shear and axial effects , 2007 .

[57]  Engesser Fr.,et al.  Die Knickfestigkeit gerader Stäbe , 1891 .

[58]  I. Elishakoff,et al.  Surface stress effects may induce softening: Euler-Bernoulli and Timoshenko buckling solutions , 2012 .

[59]  E. Reissner Some remarks on the problem of column buckling , 1982 .

[60]  Anthony M. Waas,et al.  Initial postbuckling behavior of shear deformable symmetrically laminated beams , 1992 .

[61]  H. G. Allen Analysis and design of structural sandwich panels , 1969 .

[62]  Kazuo Murota,et al.  Imperfect Bifurcation in Structures and Materials: Engineering Use of Group-Theoretic Bifurcation Theory. Applied Mathematical Sciences, Vol 149 , 2002 .

[63]  Giles W Hunt,et al.  An algorithm for the nonlinear analysis of compound bifurcation , 1981, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[64]  Philippe Le Grognec,et al.  An enriched 1D finite element for the buckling analysis of sandwich beam-columns , 2016 .

[65]  Mario M. Attard,et al.  Finite strain––beam theory , 2003 .