Searching for axionlike time-dependent cosmic birefringence with data from SPT-3G

Ultralight axionlike particles (ALPs) are compelling dark matter candidates because of their potential to resolve small-scale discrepancies between ΛCDM predictions and cosmological observations. Axion-photon coupling induces a polarization rotation in linearly polarized photons traveling through an ALP field; thus, as the local ALP dark matter field oscillates in time, distant static polarized sources will appear to oscillate with a frequency proportional to the ALP mass. We use observations of the cosmic microwave background from SPT-3G, the current receiver on the South Pole Telescope, to set upper limits on the value of the axion-photon coupling constant g φγ over the approximate mass range 10 − 22 − 10 − 19 eV, corresponding to oscillation periods from 12 hours to 100 days. For periods between 1 and 100 days (4 . 7 × 10 − 22 eV ≤ m φ ≤ 4 . 7 × 10 − 20 eV), where the limit is approximately constant, we set a median 95% C.L. upper limit on the amplitude of on-sky polarization rotation of 0 . 071 deg. Assuming that dark matter comprises a single ALP species with a local dark matter density of 0 . 3 GeV/cm 3 , this corresponds to g φγ < 1 . 18 × 10 12 GeV . These new limits represent an improvement over the previous strongest limits set using the same effect by a factor of ∼ 3 . 8.

[1]  M. Peel,et al.  Searching for dark-matter waves with PPTA and QUIJOTE pulsar polarimetry , 2022, Journal of Cosmology and Astroparticle Physics.

[2]  K. Benabed,et al.  The Design and Integrated Performance of SPT-3G , 2021, The Astrophysical Journal Supplement Series.

[3]  L. Rosenberg,et al.  Search for Invisible Axion Dark Matter in the 3.3-4.2  μeV Mass Range. , 2021, Physical review letters.

[4]  Axion dark matter search using arm cavity transmitted beams of gravitational wave detectors , 2021, Physical Review D.

[5]  M. A. Dobbs,et al.  Measurements of the E -mode polarization and temperature- E -mode correlation of the CMB from SPT-3G 2018 data , 2021, Physical Review D.

[6]  D. Gerdes,et al.  Constraints on Dark Matter Properties from Observations of Milky Way Satellite Galaxies. , 2021, Physical review letters.

[7]  H. Peiris,et al.  Strong Bound on Canonical Ultralight Axion Dark Matter from the Lyman-Alpha Forest. , 2020, Physical review letters.

[8]  Elisa G. M. Ferreira Ultra-light dark matter , 2020, The Astronomy and Astrophysics Review.

[9]  S. Veilleux,et al.  Astrophysical Limits on Very Light Axion-like Particles from Chandra Grating Spectroscopy of NGC 1275 , 2019, The Astrophysical Journal.

[10]  R. B. Barreiro,et al.  Planck 2018 results , 2018, Astronomy & Astrophysics.

[11]  M. Ando,et al.  DANCE: Dark matter Axion search with riNg Cavity Experiment , 2020 .

[12]  M. Fedderke,et al.  Axion dark matter detection with CMB polarization , 2019, Physical Review D.

[13]  S. Troitsky,et al.  Constraining the photon coupling of ultra-light dark-matter axion-like particles by polarization variations of parsec-scale jets in active galaxies , 2018, Journal of Cosmology and Astroparticle Physics.

[14]  R. W. Ogburn,et al.  Constraints on Primordial Gravitational Waves Using Planck, WMAP, and New BICEP2/Keck Observations through the 2015 Season. , 2018, Physical review letters.

[15]  R. Maruyama,et al.  Results from phase 1 of the HAYSTAC microwave cavity axion experiment , 2018, 1803.03690.

[16]  J. Vanderplas Understanding the Lomb–Scargle Periodogram , 2017, 1703.09824.

[17]  Adrian T. Lee,et al.  Measurements of the Temperature and E-mode Polarization of the CMB from 500 Square Degrees of SPTpol Data , 2017, 1707.09353.

[18]  M. J. Pivovaroff,et al.  New CAST limit on the axion–photon interaction , 2017, Nature Physics.

[19]  Matteo Viel,et al.  First Constraints on Fuzzy Dark Matter from Lyman-α Forest Data and Hydrodynamical Simulations. , 2017, Physical review letters.

[20]  S. Tremaine,et al.  Ultralight scalars as cosmological dark matter , 2016, 1610.08297.

[21]  S. Lamoreaux,et al.  Experimental Searches for the Axion and Axion-Like Particles , 2015, 1602.00039.

[22]  T. Fischer,et al.  Revisiting the SN1987A gamma-ray limit on ultralight axion-like particles , 2014, 1410.3747.

[23]  A. Ringwald,et al.  The type IIB string axiverse and its low-energy phenomenology , 2012, 1206.0819.

[24]  A. Mirizzi,et al.  Probing axion-like particles with the ultraviolet photon polarization from active galactic nuclei in radio galaxies , 2012, 1203.2184.

[25]  Gaël Varoquaux,et al.  The NumPy Array: A Structure for Efficient Numerical Computation , 2011, Computing in Science & Engineering.

[26]  Katherine Garrett,et al.  Dark Matter: A Primer , 2010, 1006.2483.

[27]  Adrian T. Lee,et al.  The 10 Meter South Pole Telescope , 2009, 0907.4445.

[28]  N. Kaloper,et al.  String Axiverse , 2009, 0905.4720.

[29]  K. Bibber,et al.  Axions as dark matter particles , 2009, 0904.3346.

[30]  Igor Sfiligoi,et al.  The Pilot Way to Grid Resources Using glideinWMS , 2009, 2009 WRI World Congress on Computer Science and Information Engineering.

[31]  Paul Avery,et al.  The Open Science Grid , 2007 .

[32]  John D. Hunter,et al.  Matplotlib: A 2D Graphics Environment , 2007, Computing in Science & Engineering.

[33]  D. Turaev,et al.  Effect of angular momentum distribution on gravitational loss-cone instability in stellar clusters around a massive black hole , 2007, 0710.1193.

[34]  L. Amendola,et al.  Dark matter from an ultra-light pseudo-Goldsone-boson , 2005, hep-ph/0509257.

[35]  C. B. Netterfield,et al.  MASTER of the Cosmic Microwave Background Anisotropy Power Spectrum: A Fast Method for Statistical Analysis of Large and Complex Cosmic Microwave Background Data Sets , 2001, astro-ph/0105302.

[36]  Eric Jones,et al.  SciPy: Open Source Scientific Tools for Python , 2001 .

[37]  R. Barkana,et al.  Fuzzy cold dark matter: the wave properties of ultralight particles. , 2000, Physical review letters.

[38]  P. Salucci,et al.  The Universal Rotation Curve of Spiral Galaxies: I. the Dark Matter Connection , 1995, astro-ph/9506004.

[39]  Hill,et al.  Cosmology with ultralight pseudo Nambu-Goldstone bosons. , 1995, Physical review letters.

[40]  E. Witten Some properties of O(32) superstrings , 1984 .

[41]  Michael Dine,et al.  The Not So Harmless Axion , 1983 .

[42]  Laurence F Abbott,et al.  A cosmological bound on the invisible axion , 1983 .

[43]  John Preskill,et al.  Cosmology of the invisible axion , 1983 .

[44]  F. Wilczek Problem of Strong $P$ and $T$ Invariance in the Presence of Instantons , 1978 .

[45]  S. Weinberg A new light boson , 1978 .

[46]  R. Peccei,et al.  Constraints imposed by CP conservation in the presence of pseudoparticles , 1977 .

[47]  R. Peccei,et al.  CP Conservation in the Presence of Pseudoparticles , 1977 .