RICON-The Computer Program for the Quantitative Investigations of Cyclic Organic Molecule Conformations

The methods of quantitative conformational analysis of cyclic fragments in molecules and the computer program RICON (RIng CONformations) developed by us for this purpose are considered. Program RICON uses atomic coordinates obtained from X-ray studies or force field/quantum chemical computations and allows one to analyze geometric parameters of a molecule, to compute the puckering parameters of rings in the molecule using various methods, and to obtain a verbal description of a ring conformation. The abilities of the program are described, and the examples of its application are given.

[1]  K. Pitzer,et al.  The thermodynamic properties and molecular structure of cyclohexane, methylcyclohexane, ethylcyclonexane and the seven dimethylcyclohexanes. , 1947, Journal of the American Chemical Society.

[2]  C. Haasnoot,et al.  Conformational analysis of six-membered rings in solution: ring puckering coordinates derived from vicinal NMR proton-proton coupling constants , 1993 .

[3]  Jan C. A. Boeyens,et al.  Mapping the conformation of eight‐membered rings , 1988 .

[4]  D. Cremer,et al.  General definition of ring puckering coordinates , 1975 .

[5]  Richard N. McDonald,et al.  Strained Ring Systems. I. Peroxidation Studies with Certain Acetylenes. The Relevance of Oxirene Intermediates , 1964 .

[6]  N. Nudelman,et al.  Molecular Orbital Theory of the Electronic Structure of Organic Compounds , 1981 .

[7]  Jan C. A. Boeyens,et al.  The conformation of nine-membered rings , 1990 .

[8]  A. Warshel,et al.  Consistent Force Field for Calculations of Conformations, Vibrational Spectra, and Enthalpies of Cycloalkane and n‐Alkane Molecules , 1968 .

[9]  Vladimir A. Palyulin,et al.  STEREOCHEMICAL STUDIES. XXXIV. * QUANTITATIVE DESCRIPTION OF RING PUCKERING VIA TORSIONAL ANGLES. THE CASE OF SIX-MEMBERED RINGS , 1990 .

[10]  H. J. Geise,et al.  The relations between torsional and valency angles of cyclopentane , 1967 .

[11]  A. T. Blomquist,et al.  Contraction of Medium Size Rings1 , 1961 .

[12]  Herbert L. Strauss,et al.  Symmetry and Conformation of the Cycloalkanes , 1971 .

[13]  R. T. Sanderson Interrelation of bond dissociation energies and contributing bond energies , 1975 .

[14]  James B. Hendrickson,et al.  Molecular geometry. VII. Modes of interconversion in the medium rings , 1967 .

[15]  M. Proulx,et al.  Functionalized hydrocarbons with condensed ring skeletons. I. Tricyclo[7.4.0.02,6]tridecane skeleton , 1988 .

[16]  Jan C. A. Boeyens,et al.  Conformational analysis of ring pucker , 1989 .

[17]  James B. Hendrickson,et al.  Molecular Geometry. IV. The Medium Rings , 1964 .

[18]  C. Haasnoot,et al.  The Conformation of Six-Membered Rings Described by Puckering Coordinates Derived from Endocyclic Torsion Angles , 1992 .

[19]  Gustavo Portalone,et al.  Structural studies of benzene derivatives. XI. The structure of p-toluidine hydrochloride , 1982 .

[20]  John I. Brauman,et al.  Kinetic models for gas-phase electron-transfer reactions between nitrobenzenes , 1992 .

[21]  H. J. Geise,et al.  Conformation of non-aromatic ring compounds, Part L boat/twist-boat pseudorotation in six-membered ring compounds , 1968 .

[22]  Michael F. Lynch,et al.  Theoretical aspects of ring perception and development of the extended set of smallest rings concept , 1989, J. Chem. Inf. Comput. Sci..

[23]  Peter Murray-Rust Substituent effects and the in-plane distortion of aromatic rings: a group-theoretical approach , 1982 .

[24]  Edward E. Hodgkin,et al.  Automatic assignment of chemical connectivity to organic molecules in the Cambridge Structural Database , 1992, J. Chem. Inf. Comput. Sci..

[25]  Jan C. A. Boeyens,et al.  Group theory of ring pucker , 1989 .

[26]  Jack D. Dunitz,et al.  Approximate relationships between conformational parameters in 5- and 6-membered rings , 1972 .

[27]  D. Cremer,et al.  Molecular orbital theory of the electronic structure of organic compounds. XXIII. Pseudorotation in saturated five-membered ring compounds , 1975 .

[28]  D. Cremer Theoretical Determination of Molecular Structure and Conformation. XI. The Puckering of Oxolanes , 1983 .

[29]  Jan C. A. Boeyens,et al.  The conformation of six-membered rings , 1978 .

[30]  G. A. Jeffrey,et al.  Stereographic representation of the cremer-pople ring-puckering parameters for pyranoid rings☆ , 1979 .

[31]  Marc Drouin,et al.  Functionalized Hydrocarbons with Condensed Ring Skeletons. Part 9. A Trioxotricyclo(8.4.0.02,7)tetradecane. , 1991 .

[32]  Kenneth S. Pitzer,et al.  Additions and Corrections: The Thermodynamics and Molecular Structure of Cyclopentane. , 1958 .

[33]  Jan C. A. Boeyens,et al.  Identification of the conformational type of seven-membered rings , 1980 .

[34]  Michael F. Lynch,et al.  Review of ring perception algorithms for chemical graphs , 1989, J. Chem. Inf. Comput. Sci..

[35]  Kenneth S. Pitzer,et al.  The Thermodynamics and Molecular Structure of Cyclopentane1 , 1947 .

[36]  James B. Hendrickson,et al.  Molecular geometry. V. Evaluation of functions and conformations of medium rings , 1967 .

[37]  Dieter Cremer,et al.  On the correct usage of the Cremer–Pople puckering parameters as quantitative descriptors of ring shapes – a reply to recent criticism by Petit, Dillen and Geise , 1984 .

[38]  N. C. Pyper,et al.  Polarizability and nuclear shielding for the sodium anion in condensed phases , 1993 .

[39]  Igor I. Baskin,et al.  QUANTATIVE CHARACTERISTICS OF NINE-MEMBERED RING CONFORMATIONS , 1995 .

[40]  Vladimir A. Palyulin,et al.  Conformations of eight-membered cyclosiloxanes , 1981 .