Mapping quantitative trait loci in complex pedigrees: a two-step variance component approach.

There is a growing need for the development of statistical techniques capable of mapping quantitative trait loci (QTL) in general outbred animal populations. Presently used variance component methods, which correctly account for the complex relationships that may exist between individuals, are challenged by the difficulties incurred through unknown marker genotypes, inbred individuals, partially or unknown marker phases, and multigenerational data. In this article, a two-step variance component approach that enables practitioners to routinely map QTL in populations with the aforementioned difficulties is explored. The performance of the QTL mapping methodology is assessed via its application to simulated data. The capacity of the technique to accurately estimate parameters is examined for a range of scenarios.

[1]  A. George,et al.  Localization of a Quantitative Trait Locus via a Bayesian Approach , 2000, Biometrics.

[2]  K. Liang,et al.  Asymptotic Properties of Maximum Likelihood Estimators and Likelihood Ratio Tests under Nonstandard Conditions , 1987 .

[3]  I. Hoeschele Elimination of Quantitative Trait Loci Equations in an Animal Model Incorporating Genetic Marker Data , 1993 .

[4]  N. Sheehan,et al.  Problems with determination of noncommunicating classes for Monte Carlo Markov chain applications in pedigree analysis. , 1998, Biometrics.

[5]  I. Hoeschele,et al.  Mapping-linked quantitative trait loci using Bayesian analysis and Markov chain Monte Carlo algorithms. , 1997, Genetics.

[6]  S. Xu,et al.  Combining different line crosses for mapping quantitative trait loci using the identical by descent-based variance component method. , 1998, Genetics.

[7]  C. Cannings,et al.  Probability functions on complex pedigrees , 1978, Advances in Applied Probability.

[8]  S. S. Wilks The Large-Sample Distribution of the Likelihood Ratio for Testing Composite Hypotheses , 1938 .

[9]  R. Elston,et al.  A general model for the genetic analysis of pedigree data. , 1971, Human heredity.

[10]  Donald Geman,et al.  Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[11]  R. Fernando,et al.  Covariance between relatives for a marked quantitative trait locus , 1995, Genetics Selection Evolution.

[12]  I. Hoeschele,et al.  Mapping quantitative trait loci in outcross populations via residual maximum likelihood. II. A simulation study , 1996, Genetics Selection Evolution.

[13]  C. Geyer,et al.  Annealing Markov chain Monte Carlo with applications to ancestral inference , 1995 .

[14]  G. Malécot,et al.  Les mathématiques de l'hérédité , 1948 .

[15]  Shizhong Xu,et al.  A random model approach to interval mapping of quantitative trait loci. , 1995, Genetics.

[16]  D. Stram,et al.  Variance components testing in the longitudinal mixed effects model. , 1994, Biometrics.

[17]  L. Cardon,et al.  Multipoint interval mapping of quantitative trait loci, using sib pairs. , 1995, American journal of human genetics.

[18]  S Lin,et al.  Finding noncommunicating sets for Markov chain Monte Carlo estimations on pedigrees. , 1994, American journal of human genetics.

[19]  B. Bainbridge,et al.  Genetics , 1981, Experientia.

[20]  S. Jayakar On the detection and estimation of linkage between a locus influencing a quantitative character and a marker locus. , 1970, Biometrics.

[21]  I. Hoeschele,et al.  Advances in statistical methods to map quantitative trait loci in outbred populations. , 1997, Genetics.

[22]  R. Doerge,et al.  Empirical threshold values for quantitative trait mapping. , 1994, Genetics.

[23]  B. Kinghorn,et al.  Use of multiple genetic markers in prediction of breeding values. , 1994, Genetics.

[24]  M Grossman,et al.  Marker assisted selection using best linear unbiased prediction , 1989, Genetics Selection Evolution.

[25]  S. Saccaro,et al.  Contents Vol. 21, 2001 , 2001, American Journal of Nephrology.

[26]  L. Almasy,et al.  Multipoint quantitative-trait linkage analysis in general pedigrees. , 1998, American journal of human genetics.

[27]  I. Hoeschele,et al.  Mapping linked quantitative trait loci via residual maximum likelihood , 1997, Genetics Selection Evolution.

[28]  D. Falconer,et al.  Introduction to Quantitative Genetics. , 1962 .

[29]  I. Hoeschele,et al.  Mapping quantitative trait loci in outcross populations via residual maximum likelihood. I. Methodology , 1996, Genetics Selection Evolution.

[30]  R. Jansen,et al.  A mixture model approach to the mapping of quantitative trait loci in complex populations with an application to multiple cattle families. , 1998, Genetics.

[31]  E. Lander,et al.  Genetic dissection of complex traits: guidelines for interpreting and reporting linkage results , 1995, Nature Genetics.

[32]  Elizabeth A. Thompson,et al.  Genetic restoration on complex pedigrees , 1990 .

[33]  E. Wijsman,et al.  Achieving irreducibility of the Markov chain Monte Carlo method applied to pedigree data. , 1993, IMA journal of mathematics applied in medicine and biology.

[34]  S. Heath Markov chain Monte Carlo segregation and linkage analysis for oligogenic models. , 1997, American journal of human genetics.

[35]  C. Amos Robust variance-components approach for assessing genetic linkage in pedigrees. , 1994, American journal of human genetics.