Superdifferential cuts for binary energies

We propose an efficient and general purpose energy optimization method for binary variable energies used in various low-level vision tasks. Our method can be used for broad classes of higher-order and pairwise non-submodular functions. We first revisit a submodular-supermodular procedure (SSP) [19], which is previously studied for higher-order energy optimization. We then present our method as generalization of SSP, which is further shown to generalize several state-of-the-art techniques for higher-order and pairwise non-submodular functions [2, 9, 25]. In the experiments, we apply our method to image segmentation, deconvolution, and binarization, and show improvements over state-of-the-art methods.

[1]  Takeshi Naemura,et al.  Image Segmentation using Dual Distribution Matching , 2012, BMVC.

[2]  G. B. Smith,et al.  Preface to S. Geman and D. Geman, “Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images” , 1987 .

[3]  Vladimir Kolmogorov,et al.  Cosegmentation Revisited: Models and Optimization , 2010, ECCV.

[4]  Scott Cohen,et al.  Geodesic graph cut for interactive image segmentation , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[5]  Vladimir Kolmogorov,et al.  Applications of parametric maxflow in computer vision , 2007, 2007 IEEE 11th International Conference on Computer Vision.

[6]  Vladimir Kolmogorov,et al.  Minimizing Nonsubmodular Functions with Graph Cuts-A Review , 2007, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[7]  Vladimir Kolmogorov,et al.  What energy functions can be minimized via graph cuts? , 2002, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[8]  Lena Gorelick,et al.  Fast Trust Region for Segmentation , 2013, 2013 IEEE Conference on Computer Vision and Pattern Recognition.

[9]  C. Dyer,et al.  Half-integrality based algorithms for cosegmentation of images , 2009, 2009 IEEE Conference on Computer Vision and Pattern Recognition.

[10]  Donald Geman,et al.  Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[11]  Alexander Schrijver,et al.  A Combinatorial Algorithm Minimizing Submodular Functions in Strongly Polynomial Time , 2000, J. Comb. Theory B.

[12]  Takeshi Naemura,et al.  Foreground-background segmentation using iterated distribution matching , 2011, CVPR 2011.

[13]  Leo Grady,et al.  Fast global optimization of curvature , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[14]  Satoru Fujishige,et al.  Submodular functions and optimization , 1991 .

[15]  Andrew Blake,et al.  "GrabCut" , 2004, ACM Trans. Graph..

[16]  Jeff A. Bilmes,et al.  A Submodular-supermodular Procedure with Applications to Discriminative Structure Learning , 2005, UAI.

[17]  Lena Gorelick,et al.  Auxiliary Cuts for General Classes of Higher Order Functionals , 2013, 2013 IEEE Conference on Computer Vision and Pattern Recognition.

[18]  Rishabh K. Iyer,et al.  Fast Semidifferential-based Submodular Function Optimization , 2013, ICML.

[19]  Andrew Blake,et al.  GeoS: Geodesic Image Segmentation , 2008, ECCV.

[20]  Lena Gorelick,et al.  Submodularization for Binary Pairwise Energies , 2014, 2014 IEEE Conference on Computer Vision and Pattern Recognition.

[21]  Vladimir Kolmogorov,et al.  An experimental comparison of min-cut/max- flow algorithms for energy minimization in vision , 2001, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[22]  Ismail Ben Ayed,et al.  Pseudo-bound Optimization for Binary Energies , 2014, ECCV.

[23]  Shuo Li,et al.  Graph cut segmentation with a global constraint: Recovering region distribution via a bound of the Bhattacharyya measure , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[24]  Andrew Blake,et al.  Cosegmentation of Image Pairs by Histogram Matching - Incorporating a Global Constraint into MRFs , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[25]  Vladimir Kolmogorov,et al.  Convergent Tree-Reweighted Message Passing for Energy Minimization , 2006, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[26]  Hao Jiang Linear solution to scale invariant global figure ground separation , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[27]  Aaron D. Ward,et al.  Segmentation with Non-linear Regional Constraints via Line-Search Cuts , 2012, ECCV.

[28]  P. Toivanen New geodesic distance transforms for grayscale images , 2002 .

[29]  Pekka J. Toivanen New geodosic distance transforms for gray-scale images , 1996, Pattern Recognit. Lett..

[30]  Marie-Pierre Jolly,et al.  Interactive graph cuts for optimal boundary & region segmentation of objects in N-D images , 2001, Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001.