Experimental quantum computation with nuclear spins in liquid solution

Quantum computation offers the extraordinary promise of solving mathematical and physical problems which are simply beyond the reach of classical computers. However, the experimental realization of quantum computers is extremely challenging, because of the need to initialize, manipulate and measure the state of a set of coupled quantum systems while maintaining fragile quantum coherence. In this thesis work, we have taken significant steps towards the realization of a practical quantum computer: using nuclear spins and magnetic resonance techniques at room temperature, we provided proof of principle of quantum computing in a series of experiments which culminated in the implementation of the simplest instance of Shor’s quantum algorithm for prime factorization (15 = 3 × 5), using a seven-spin molecule. This algorithm achieves an exponential advantage over the best known classical factoring algorithms and its implementation represents a milestone in the experimental exploration of quantum computation. These remarkable successes have been made possible by the synthesis of suitable molecules and the development of many novel techniques for initialization, coherent control and readout of the state of multiple coupled nuclear spins. Furthermore, we devised and implemented a model to simulate both unitary and decoherence processes in these systems, in order to study and quantify the impact of various technological as well as fundamental sources of errors. In summary, this work has given us a much needed practical appreciation of what it takes to build a quantum computer. Furthermore, while liquid NMR quantum computing has well-understood scaling limitations, many of the techniques that originated from this research may find use in other, perhaps more scalable quantum computer implementations.

[1]  L. Vandersypen,et al.  Implementation of a three-quantum-bit search algorithm , 1999, quant-ph/9910075.

[2]  Hiroshi Ozawa,et al.  Method for effective pure states with any number of spins , 2000 .

[3]  Amr Fahmy,et al.  Approaching five-bit NMR quantum computing , 2000 .

[4]  I. L. Chuang,et al.  Quantum Error Correction by Coding , 1995 .

[5]  D. Deutsch Quantum theory, the Church–Turing principle and the universal quantum computer , 1985, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[6]  M. Y. Simmons,et al.  Towards the fabrication of phosphorus qubits for a silicon quantum computer , 2001 .

[7]  Timothy F. Havel,et al.  Nuclear magnetic resonance spectroscopy: an experimentally accessible paradigm for quantum computing , 1997, quant-ph/9709001.

[8]  Resolved-Sideband Raman Cooling to the Ground State of an Optical Lattice , 1998, quant-ph/9801025.

[9]  H. Kimble,et al.  Teleportation of continuous quantum variables , 1998, Technical Digest. Summaries of Papers Presented at the International Quantum Electronics Conference. Conference Edition. 1998 Technical Digest Series, Vol.7 (IEEE Cat. No.98CH36236).

[10]  Isaac L. Chuang,et al.  Demonstrating the viability of universal quantum computation using teleportation and single-qubit operations , 1999, Nature.

[11]  N. Gershenfeld,et al.  Quantum Computing with Molecules , 1998 .

[12]  B. E. Kane A silicon-based nuclear spin quantum computer , 1998, Nature.

[13]  D. DiVincenzo,et al.  Quantum computation with quantum dots , 1997, cond-mat/9701055.

[14]  N. Gisin,et al.  Quantum cryptography over 23 km in installed under-lake telecom fibre , 1996 .

[15]  D Leibfried,et al.  Experimental demonstration of ground state laser cooling with electromagnetically induced transparency. , 2000, Physical review letters.

[16]  C. Slichter Principles of magnetic resonance , 1963 .

[17]  A. Kitaev Quantum computations: algorithms and error correction , 1997 .

[18]  P. Grangier,et al.  Experimental Tests of Realistic Local Theories via Bell's Theorem , 1981 .

[19]  C. R. Stanley,et al.  Coherent manipulation of semiconductor quantum bits with terahertz radiation , 2001, Nature.

[20]  J. Levy Universal quantum computation with spin-1/2 pairs and Heisenberg exchange. , 2001, Physical review letters.

[21]  S. Vega,et al.  Derivation of Broadband and Narrowband Excitation Pulses Using the Floquet Formalism , 1993 .

[22]  Richard Cleve,et al.  The query complexity of order-finding , 1999, Proceedings 15th Annual IEEE Conference on Computational Complexity.

[23]  P. Benioff The computer as a physical system: A microscopic quantum mechanical Hamiltonian model of computers as represented by Turing machines , 1980 .

[24]  N. Koblitz A Course in Number Theory and Cryptography , 1987 .

[25]  N. Linden,et al.  NMR quantum logic gates for homonuclear spin systems , 1999, quant-ph/9907003.

[26]  D. Awschalom,et al.  Coherent transfer of spin through a semiconductor heterointerface. , 2000, Physical review letters.

[27]  Wineland,et al.  Observation of quantum jumps in a single atom. , 1986, Physical review letters.

[28]  Lloyd,et al.  Almost any quantum logic gate is universal. , 1995, Physical review letters.

[29]  F. Martini,et al.  Experimental Realization of Teleporting an Unknown Pure Quantum State via Dual Classical and Einstein-Podolsky-Rosen Channels , 1997, quant-ph/9710013.

[30]  Geoffrey Bodenhausen,et al.  Phase shifts induced by transient Bloch-Siegert effects in NMR , 1990 .

[31]  E. Knill,et al.  Complete quantum teleportation using nuclear magnetic resonance , 1998, Nature.

[32]  Hong-xiang Sun,et al.  Method of multifrequency excitation for creating pseudopure states for NMR quantum computing , 2001 .

[33]  Adi Shamir,et al.  A method for obtaining digital signatures and public-key cryptosystems , 1978, CACM.

[34]  C. Macchiavello,et al.  Error Correction in Quantum Communication , 1996, quant-ph/9602022.

[35]  Albert Einstein,et al.  Can Quantum-Mechanical Description of Physical Reality Be Considered Complete? , 1935 .

[36]  J. Jeener Superoperators in Magnetic Resonance , 1982 .

[37]  Poul S. Jessen,et al.  Quantum Computing with Neutral Atoms in An Optical Lattice , 2000, quant-ph/0003022.

[38]  D. Deutsch Quantum computational networks , 1989, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[39]  Klaus Molmer,et al.  Multiparticle Entanglement of Hot Trapped Ions , 1998, quant-ph/9810040.

[40]  P. Bertet,et al.  Step-by-step engineered multiparticle entanglement , 2000, Science.

[41]  Carlton M. Caves,et al.  QUANTUM LOGIC GATES IN OPTICAL LATTICES , 1999 .

[42]  A. Ekert,et al.  Universality in quantum computation , 1995, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[43]  Yuriy Makhlin,et al.  Josephson-junction qubits with controlled couplings , 1999, Nature.

[44]  Pines,et al.  Indirect phase detection of NMR spinor transitions. , 1986, Physical review letters.

[45]  King,et al.  Demonstration of a fundamental quantum logic gate. , 1995, Physical review letters.

[46]  J. Pauly,et al.  Parameter relations for the Shinnar-Le Roux selective excitation pulse design algorithm [NMR imaging]. , 1991, IEEE transactions on medical imaging.

[47]  D. Gottesman Theory of fault-tolerant quantum computation , 1997, quant-ph/9702029.

[48]  Wineland,et al.  Laser cooling to the zero-point energy of motion. , 1989, Physical review letters.

[49]  E. A. Gere,et al.  Electron Spin Resonance Experiments on Donors in Silicon. II. Electron Spin Relaxation Effects , 1959 .

[50]  Milburn,et al.  Quantum optical Fredkin gate. , 1989, Physical review letters.

[51]  Timothy F. Havel,et al.  A study of quantum error correction by geometric algebra and liquid-state NMR spectroscopy , 2000, quant-ph/0004030.

[52]  David Collins,et al.  NMR quantum computation with indirectly coupled gates , 2000 .

[53]  F K Wilhelm,et al.  Quantum superposition of macroscopic persistent-current states. , 2000, Science.

[54]  Unruh Maintaining coherence in quantum computers. , 1994, Physical review. A, Atomic, molecular, and optical physics.

[55]  N. Gershenfeld,et al.  Experimental Implementation of Fast Quantum Searching , 1998 .

[56]  S Lloyd,et al.  A Potentially Realizable Quantum Computer , 1993, Science.

[57]  Charles H. Bennett,et al.  Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states. , 1992, Physical review letters.

[58]  Andrew Chi-Chih Yao,et al.  Quantum Circuit Complexity , 1993, FOCS.

[59]  Debbie W. Leung,et al.  Efficient implementation of selective recoupling in heteronuclear spin systems using hadamard matrices , 2000 .

[60]  Seth Lloyd,et al.  Experimental demonstration of greenberger-horne-zeilinger correlations using nuclear magnetic resonance , 2000 .

[61]  Dreyer,et al.  Quantum Rabi oscillation: A direct test of field quantization in a cavity. , 1996, Physical review letters.

[62]  Steffen J. Glaser,et al.  Nuclear magnetic resonance quantum computing exploiting the pure spin state of para hydrogen , 2000 .

[63]  Ray Freeman,et al.  Band-selective radiofrequency pulses , 1991 .

[64]  F. Yamaguchi,et al.  Crystal lattice quantum computer , 1999 .

[65]  R. Vold,et al.  Nuclear magnetic relaxation in coupled spin systems , 1978 .

[66]  A. Church An Unsolvable Problem of Elementary Number Theory , 1936 .

[67]  Peter W. Shor,et al.  Algorithms for quantum computation: discrete logarithms and factoring , 1994, Proceedings 35th Annual Symposium on Foundations of Computer Science.

[68]  D. Leung,et al.  Bulk quantum computation with nuclear magnetic resonance: theory and experiment , 1998, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[69]  Timothy F. Havel,et al.  Ensemble quantum computing by NMR spectroscopy , 1997, Proc. Natl. Acad. Sci. USA.

[70]  C. Jeffries Dynamic nuclear orientation , 1963 .

[71]  Jeffrey D. Ullman,et al.  Introduction to Automata Theory, Languages and Computation , 1979 .

[72]  E. Knill,et al.  Resilient Quantum Computation , 1998 .

[73]  C. Monroe,et al.  Experimental entanglement of four particles , 2000, Nature.

[74]  Daniel R. Simon On the Power of Quantum Computation , 1997, SIAM J. Comput..

[75]  I. Chuang,et al.  Quantum Computation and Quantum Information: Introduction to the Tenth Anniversary Edition , 2010 .

[76]  R Freeman,et al.  Pulse sequences for NMR quantum computers: how to manipulate nuclear spins while freezing the motion of coupled neighbours , 1999 .

[77]  A. Turing On Computable Numbers, with an Application to the Entscheidungsproblem. , 1937 .

[78]  R. Schack,et al.  Classical model for bulk-ensemble NMR quantum computation , 1999, quant-ph/9903101.

[79]  L M Vandersypen,et al.  Experimental realization of an order-finding algorithm with an NMR quantum computer. , 2000, Physical review letters.

[80]  J. Cirac,et al.  Quantum Computations with Cold Trapped Ions. , 1995, Physical review letters.

[81]  Gilles Brassard,et al.  Tight bounds on quantum searching , 1996, quant-ph/9605034.

[82]  S. Lloyd,et al.  Quantum Algorithm Providing Exponential Speed Increase for Finding Eigenvalues and Eigenvectors , 1998, quant-ph/9807070.

[83]  E. Knill,et al.  Power of One Bit of Quantum Information , 1998, quant-ph/9802037.

[84]  H. Mabuchi,et al.  Real-time detection of individual atoms falling through a high-finesse optical cavity. , 1996, Optics letters.

[85]  W. Wootters,et al.  A single quantum cannot be cloned , 1982, Nature.

[86]  A. R. Bailey,et al.  Kinetic and Thermodynamic Studies of the Thermal Electrocyclic Interconversions of Perfluorinated Dienes and Cyclobutenes , 1987 .

[87]  C. F. Roos,et al.  Sympathetic ground-state cooling and coherent manipulation with two-ion crystals , 2000, quant-ph/0009031.

[88]  N. Mermin Quantum theory: Concepts and methods , 1997 .

[89]  Ray Freeman,et al.  Shaped radiofrequency pulses in high resolution NMR , 1998 .

[90]  Umesh V. Vazirani,et al.  Molecular scale heat engines and scalable quantum computation , 1999, STOC '99.

[91]  E. Knill,et al.  A scheme for efficient quantum computation with linear optics , 2001, Nature.

[92]  Isaac L. Chuang,et al.  Liquid State NMR Quantum Computing , 2001 .

[93]  G. Hardy,et al.  An Introduction To The Theory Of Numbers Fourth Edition , 1968 .

[94]  Timothy F. Havel,et al.  NMR Based Quantum Information Processing: Achievements and Prospects , 2000, quant-ph/0004104.

[95]  Charles H. Bennett,et al.  Logical reversibility of computation , 1973 .

[96]  Steffen,et al.  Simultaneous soft pulses applied at nearby frequencies , 2000, Journal of magnetic resonance.

[97]  Peter W. Shor,et al.  Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer , 1995, SIAM Rev..

[98]  S. Patt Single- and multiple-frequency-shifted laminar pulses , 1992 .

[99]  Jaehyun Kim,et al.  Implementation of the refined Deutsch-Jozsa algorithm on a three-bit NMR quantum computer , 1999, quant-ph/9910015.

[100]  MIT,et al.  Non-thermal nuclear magnetic resonance quantum computing using hyperpolarized xenon , 2001 .

[101]  Charles H. Bennett,et al.  Teleporting an unknown quantum state via dual classical and EPR channels , 1993 .

[102]  E. Knill,et al.  Theory of quantum error-correcting codes , 1997 .

[103]  Alexei Y. Kitaev,et al.  Quantum measurements and the Abelian Stabilizer Problem , 1995, Electron. Colloquium Comput. Complex..

[104]  P. Zoller,et al.  A scalable quantum computer with ions in an array of microtraps , 2000, Nature.

[105]  R. Feynman Simulating physics with computers , 1999 .

[106]  U. Haeberlen,et al.  High resolution NMR in solids , 1976 .

[107]  Thomas M. Cover,et al.  Elements of Information Theory , 2005 .

[108]  Tommaso Toffoli,et al.  Reversible Computing , 1980, ICALP.

[109]  D. Deutsch,et al.  Rapid solution of problems by quantum computation , 1992, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[110]  L. Vandersypen,et al.  Realization of Logically Labeled Effective Pure States for Bulk Quantum Computation , 1999, quant-ph/9905041.

[111]  R. Fiederling,et al.  Injection and detection of a spin-polarized current in a light-emitting diode , 1999, Nature.

[112]  Gilles Brassard,et al.  Strengths and Weaknesses of Quantum Computing , 1997, SIAM J. Comput..

[113]  D. Leung,et al.  Experimental realization of a quantum algorithm , 1998, Nature.

[114]  J. A. Jones,et al.  Implementation of a quantum algorithm on a nuclear magnetic resonance quantum computer , 1998, quant-ph/9801027.

[115]  Jonathan A. Jones,et al.  Implementation of a quantum search algorithm on a quantum computer , 1998, Nature.

[116]  R. Jozsa,et al.  SEPARABILITY OF VERY NOISY MIXED STATES AND IMPLICATIONS FOR NMR QUANTUM COMPUTING , 1998, quant-ph/9811018.

[117]  Peterson,et al.  Daylight quantum key distribution over 1.6 km , 2000, Physical review letters.

[118]  J. Raimond,et al.  Quantum Memory with a Single Photon in a Cavity , 1997 .

[119]  Isaac L. Chuang,et al.  Toward Quantum Computation: A Five-Qubit Quantum Processor , 2001, IEEE Micro.

[120]  D. Dieks Communication by EPR devices , 1982 .

[121]  Gilles Brassard,et al.  Quantum Counting , 1998, ICALP.

[122]  R. Cleve,et al.  Quantum algorithms revisited , 1997, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[123]  W. Zurek The Environment, Decoherence and the Transition from Quantum to Classical , 1991 .

[124]  S. Braunstein,et al.  Quantum computation over continuous variables , 1998 .

[125]  R. Landauer,et al.  Irreversibility and heat generation in the computing process , 1961, IBM J. Res. Dev..

[126]  D. DiVincenzo Quantum gates and circuits , 1997, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[127]  D. Averin Quantum Computing and Quantum Measurement with Mesoscopic Josephson Junctions , 2000, quant-ph/0008114.

[128]  R. Martinez,et al.  An algorithmic benchmark for quantum information processing , 2000, Nature.

[129]  M. Mosca,et al.  APPROXIMATE QUANTUM COUNTING ON AN NMR ENSEMBLE QUANTUM COMPUTER , 1999 .

[130]  E M Fortunato,et al.  Implementation of the quantum Fourier transform. , 2001, Physical review letters.

[131]  I. Chuang,et al.  Experimental realization of Shor's quantum factoring algorithm using nuclear magnetic resonance , 2001, Nature.

[132]  D. Rugar,et al.  Mechanical detection of magnetic resonance , 1992, Nature.

[133]  A. Siegert,et al.  Magnetic Resonance for Nonrotating Fields , 1940 .

[134]  Charles H. Bennett,et al.  Quantum cryptography using any two nonorthogonal states. , 1992, Physical review letters.

[135]  Dolores C. Miller,et al.  NUCLEAR MAGNETIC RESONANCE QUANTUM COMPUTING USING LIQUID CRYSTAL SOLVENTS , 1999 .

[136]  J. Raimond,et al.  Seeing a single photon without destroying it , 1999, Nature.

[137]  Debbie Leung,et al.  Experimental realization of a two-bit phase damping quantum code , 1999 .

[138]  Lov K. Grover Quantum Mechanics Helps in Searching for a Needle in a Haystack , 1997, quant-ph/9706033.

[139]  Mark Dykman,et al.  Quantum Computing with Electrons Floating on Liquid Helium , 1999 .

[140]  Hood,et al.  Measurement of conditional phase shifts for quantum logic. , 1995, Physical review letters.

[141]  R. Jozsa,et al.  Quantum Computation and Shor's Factoring Algorithm , 1996 .

[142]  D. E. Chang,et al.  NMR implementation of a building block for scalable quantum computation , 2001 .

[143]  D. Coppersmith An approximate Fourier transform useful in quantum factoring , 2002, quant-ph/0201067.

[144]  E Knill,et al.  Efficient refocusing of one-spin and two-spin interactions for NMR quantum computation. , 1999, Journal of magnetic resonance.

[145]  K. B. Whaley,et al.  Universal quantum computation with the exchange interaction , 2000, Nature.

[146]  Jaw-Shen Tsai,et al.  Spectroscopy of Energy-Level Splitting between Two Macroscopic Quantum States of Charge Coherently Superposed by Josephson Coupling , 1997 .

[147]  C. Monroe,et al.  Cooling the Collective Motion of Trapped Ions to Initialize a Quantum Register , 1998, quant-ph/9803023.

[148]  I. Haslock,et al.  The hydrofluorocarbon 1,1,1,2-tetrafluoroethane (HFC-134a) as a ready source of trifluorovinyllithium , 1996 .

[149]  H. Carr,et al.  The Principles of Nuclear Magnetism , 1961 .

[150]  Philippe Grangier,et al.  Implementations of Quantum Computing Using Cavity Quantum Electrodynamics Schemes , 2000 .

[151]  Lov K. Grover A fast quantum mechanical algorithm for database search , 1996, STOC '96.

[152]  Timothy F. Havel,et al.  Quantum simulation of a three-body-interaction Hamiltonian on an NMR quantum computer , 1999, quant-ph/9908012.

[153]  Steane,et al.  Error Correcting Codes in Quantum Theory. , 1996, Physical review letters.

[154]  Schumacher,et al.  Quantum data processing and error correction. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[155]  S. Lloyd Quantum-Mechanical Computers , 1995 .

[156]  Timothy F. Havel,et al.  Quantum Simulations on a Quantum Computer , 1999, quant-ph/9905045.

[157]  K. Kraus,et al.  States, effects, and operations : fundamental notions of quantum theory : lectures in mathematical physics at the University of Texas at Austin , 1983 .

[158]  Mang Feng,et al.  Experimental implementation of dense coding using nuclear magnetic resonance , 2000 .

[159]  Y. Pashkin,et al.  Coherent control of macroscopic quantum states in a single-Cooper-pair box , 1999, Nature.

[160]  N. David Mermin,et al.  Is the Moon There When Nobody Looks? Reality and the Quantum Theory , 1985 .

[161]  Richard Phillips Feynman,et al.  Quantum mechanical computers , 1984, Feynman Lectures on Computation.

[162]  E. Knill,et al.  EFFECTIVE PURE STATES FOR BULK QUANTUM COMPUTATION , 1997, quant-ph/9706053.

[163]  C. S. Wood,et al.  Deterministic Entanglement of Two Trapped Ions , 1998 .

[164]  D. K. Young,et al.  Electrical spin injection in a ferromagnetic semiconductor heterostructure , 1999, Nature.

[165]  C. Monroe,et al.  Experimental Issues in Coherent Quantum-State Manipulation of Trapped Atomic Ions , 1997, Journal of research of the National Institute of Standards and Technology.

[166]  Eli Yablonovitch,et al.  Electron-spin-resonance transistors for quantum computing in silicon-germanium heterostructures , 1999, quant-ph/9905096.

[167]  DiVincenzo Two-bit gates are universal for quantum computation. , 1994, Physical review. A, Atomic, molecular, and optical physics.

[168]  Warren S. Warren,et al.  Effects of arbitrary laser or NMR pulse shapes on population inversion and coherence , 1984 .

[169]  D. P. DiVincenzo,et al.  Quantum computers and quantum coherence , 1999 .

[170]  J. A. Jones NMR quantum computation , 2000 .

[171]  Vijay Patel,et al.  Quantum superposition of distinct macroscopic states , 2000, Nature.

[172]  Preskill,et al.  Efficient networks for quantum factoring. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[173]  D. D. Awschalom,et al.  Quantum information processing using quantum dot spins and cavity QED , 1999 .

[174]  H. Weinfurter,et al.  Experimental quantum teleportation , 1997, Nature.

[175]  R. Meservey,et al.  SPIN POLARIZATION OF ELECTRONS TUNNELING FROM FILMS OF Fe, Co, Ni, AND Gd. , 1973 .

[176]  Seth Lloyd,et al.  Universal Quantum Simulators , 1996, Science.

[177]  Barenco,et al.  Elementary gates for quantum computation. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[178]  N. Gershenfeld,et al.  Bulk Spin-Resonance Quantum Computation , 1997, Science.

[179]  G. Bodenhausen,et al.  Principles of nuclear magnetic resonance in one and two dimensions , 1987 .

[180]  Sandberg,et al.  Shelved optical electron amplifier: Observation of quantum jumps. , 1986, Physical review letters.

[181]  Timothy F. Havel,et al.  EXPERIMENTAL QUANTUM ERROR CORRECTION , 1998, quant-ph/9802018.