On the convergence rates of Legendre approximation

The problem of the rate of convergence of Legendre approximation is considered. We first establish the decay rates of the coefficients in the Legendre series expansion and then derive error bounds of the truncated Legendre series in the uniform norm. In addition, we consider Legendre approximation with interpolation. In particular, we are interested in the barycentric Lagrange formula at the Gauss-Legendre points. Explicit barycentric weights, in terms of Gauss-Legendre points and corresponding quadrature weights, are presented that allow a fast evaluation of the Legendre interpolation formula. Error estimates for Legendre interpolation polynomials are also given.

[1]  D. Gottlieb,et al.  Numerical analysis of spectral methods : theory and applications , 1977 .

[2]  Lloyd N. Trefethen,et al.  Barycentric Lagrange Interpolation , 2004, SIAM Rev..

[3]  C. W. Clenshaw,et al.  A method for numerical integration on an automatic computer , 1960 .

[4]  W. Gautschi Numerical analysis: an introduction , 1997 .

[5]  Jie Shen,et al.  Efficient Spectral-Galerkin Method I. Direct Solvers of Second- and Fourth-Order Equations Using Legendre Polynomials , 1994, SIAM J. Sci. Comput..

[6]  Germund Dahlquist,et al.  Numerical methods in scientific computing , 2008 .

[7]  Péter Vértesi Lagrange interpolation for continuous functions of bounded variation , 1980 .

[8]  T. J. Rivlin The Chebyshev polynomials , 1974 .

[9]  Arieh Iserles,et al.  A fast and simple algorithm for the computation of Legendre coefficients , 2011, Numerische Mathematik.

[10]  M. Abramowitz,et al.  Handbook of Mathematical Functions With Formulas, Graphs and Mathematical Tables (National Bureau of Standards Applied Mathematics Series No. 55) , 1965 .

[11]  Jie Shen,et al.  Efficient Spectral-Galerkin Method II. Direct Solvers of Second- and Fourth-Order Equations Using Chebyshev Polynomials , 1995, SIAM J. Sci. Comput..

[12]  B. Guo,et al.  Spectral Methods and Their Applications , 1998 .

[13]  P. Davis Interpolation and approximation , 1965 .

[14]  Jae-Hun Jung,et al.  On the numerical convergence with the inverse polynomial reconstruction method for the resolution of the Gibbs phenomenon , 2007, J. Comput. Phys..

[15]  Bengt Fornberg,et al.  A practical guide to pseudospectral methods: Introduction , 1996 .

[16]  Forman S. Acton,et al.  Numerical methods that work , 1970 .

[17]  Philip Rabinowitz,et al.  Methods of Numerical Integration , 1985 .

[18]  E. Cheney Introduction to approximation theory , 1966 .

[19]  Kevin Barraclough,et al.  I and i , 2001, BMJ : British Medical Journal.

[20]  Daniele Funaro,et al.  Spectral Elements for Transport-Dominated Equations , 1997, Lecture Notes in Computational Science and Engineering.

[21]  Jan S. Hesthaven,et al.  Spectral Methods for Time-Dependent Problems: Contents , 2007 .

[22]  Jie Shen,et al.  Spectral and High-Order Methods with Applications , 2006 .

[23]  N. Higham The numerical stability of barycentric Lagrange interpolation , 2004 .

[24]  L. Fox,et al.  Chebyshev polynomials in numerical analysis , 1970 .

[25]  L. Trefethen Spectral Methods in MATLAB , 2000 .

[26]  Steven A. Orszag,et al.  CBMS-NSF REGIONAL CONFERENCE SERIES IN APPLIED MATHEMATICS , 1978 .

[27]  E. Süli,et al.  An introduction to numerical analysis , 2003 .

[28]  Walter Gautschi,et al.  Numerical Analysis , 1978, Mathemagics: A Magical Journey Through Advanced Mathematics.

[29]  Lloyd N. Trefethen,et al.  Is Gauss Quadrature Better than Clenshaw-Curtis? , 2008, SIAM Rev..

[30]  Gene H. Golub,et al.  Calculation of Gauss quadrature rules , 1967, Milestones in Matrix Computation.

[31]  Robert Piessens,et al.  Algorithm 473: Computation of Legendre series coefficients [C6] , 1974, Commun. ACM.

[32]  Vladimir Rokhlin,et al.  A Fast Algorithm for the Calculation of the Roots of Special Functions , 2007, SIAM J. Sci. Comput..

[33]  Xiaojun Chen,et al.  Error bounds for approximation in Chebyshev points , 2010, Numerische Mathematik.

[34]  Rene F. Swarttouw,et al.  Orthogonal polynomials , 2020, NIST Handbook of Mathematical Functions.

[35]  Bradley K. Alpert,et al.  A Fast Algorithm for the Evaluation of Legendre Expansions , 1991, SIAM J. Sci. Comput..

[36]  Herbert E. Salzer,et al.  Lagrangian interpolation at the Chebyshev points xn, [ngr][equiv]cos([ngr][pgr]/n), [ngr]=0(1) n; some unnoted advantages , 1972, Comput. J..