Charge transport and localization in atomically coherent quantum dot solids.

[1]  Cherie R. Kagan,et al.  Charge transport in strongly coupled quantum dot solids. , 2015, Nature nanotechnology.

[2]  C. Delerue,et al.  High charge mobility in two-dimensional percolative networks of PbSe quantum dots connected by atomic bonds , 2015, Nature Communications.

[3]  Jonathan S. Owen,et al.  A tunable library of substituted thiourea precursors to metal sulfide nanocrystals , 2015, Science.

[4]  B. Movaghar,et al.  Electron pairing in designer materials: a novel strategy for a negative effective Hubbard U. , 2015, Nano letters.

[5]  F. Wise,et al.  Effects of Disorder on Electronic Properties of Nanocrystal Assemblies , 2015 .

[6]  K. Yager,et al.  Interparticle Spacing and Structural Ordering in Superlattice PbS Nanocrystal Solids Undergoing Ligand Exchange , 2015 .

[7]  Ivan Infante,et al.  Epitaxially connected PbSe quantum-dot films: controlled neck formation and optoelectronic properties. , 2014, ACS nano.

[8]  Christian R. Ocier,et al.  Chalcogenidometallate Clusters as Surface Ligands for PbSe Nanocrystal Field-Effect Transistors , 2014 .

[9]  Cherie R. Kagan,et al.  Designing high-performance PbS and PbSe nanocrystal electronic devices through stepwise, post-synthesis, colloidal atomic layer deposition. , 2014, Nano letters.

[10]  C. Delerue,et al.  Dirac Cones, Topological Edge States, and Nontrivial Flat Bands in Two-Dimensional Semiconductors with a Honeycomb Nanogeometry , 2014, 1502.04886.

[11]  Jonathan S. Owen,et al.  Ligand exchange and the stoichiometry of metal chalcogenide nanocrystals: spectroscopic observation of facile metal-carboxylate displacement and binding. , 2013, Journal of the American Chemical Society.

[12]  D. Milliron,et al.  Electronically coupled nanocrystal superlattice films by in situ ligand exchange at the liquid-air interface. , 2013, ACS nano.

[13]  C. Delerue,et al.  Electronic structure of atomically coherent square semiconductor superlattices with dimensionality below two , 2013 .

[14]  S. Kinge,et al.  High charge-carrier mobility enables exploitation of carrier multiplication in quantum-dot films , 2013, Nature Communications.

[15]  T. Hanrath,et al.  Confined-but-connected quantum solids via controlled ligand displacement. , 2013, Nano letters.

[16]  M. Dijkstra,et al.  Low-dimensional semiconductor superlattices formed by geometric control over nanocrystal attachment. , 2013, Nano letters.

[17]  Joo-Hyoung Lee,et al.  Impact of stoichiometry on the electronic structure of PbS quantum dots. , 2013, Physical review letters.

[18]  M. Law,et al.  PbSe quantum dot field-effect transistors with air-stable electron mobilities above 7 cm2 V(-1) s(-1). , 2013, Nano letters.

[19]  Sung-Hoon Hong,et al.  Stoichiometric control of lead chalcogenide nanocrystal solids to enhance their electronic and optoelectronic device performance. , 2013, ACS nano.

[20]  Oleksandr Voznyy,et al.  A charge-orbital balance picture of doping in colloidal quantum dot solids. , 2012, ACS nano.

[21]  Philippe Guyot-Sionnest,et al.  Electrical Transport in Colloidal Quantum Dot Films. , 2012, The journal of physical chemistry letters.

[22]  Christopher B. Murray,et al.  Binary nanocrystal superlattice membranes self-assembled at the liquid–air interface , 2010, Nature.

[23]  E. Aydil,et al.  Influence of Atmospheric Gases on the Electrical Properties of PbSe Quantum-Dot Films , 2010 .

[24]  Alexey Y. Koposov,et al.  Effect of air exposure on surface properties, electronic structure, and carrier relaxation in PbSe nanocrystals. , 2010, ACS nano.

[25]  Shinji Aramaki,et al.  Effect of diamine treatment on the conversion efficiency of PbSe colloidal quantum dot solar cells , 2009 .

[26]  William W. Yu,et al.  Stability study of PbSe semiconductor nanocrystals over concentration, size, atmosphere, and light exposure. , 2009, Langmuir : the ACS journal of surfaces and colloids.

[27]  M. Kovalenko,et al.  Colloidal Nanocrystals with Molecular Metal Chalcogenide Surface Ligands , 2009, Science.

[28]  Barbara K. Hughes,et al.  Structural, optical, and electrical properties of PbSe nanocrystal solids treated thermally or with simple amines. , 2008, Journal of the American Chemical Society.

[29]  Matt Law,et al.  Structural, optical, and electrical properties of self-assembled films of PbSe nanocrystals treated with 1,2-ethanedithiol. , 2008, ACS nano.

[30]  P. Marko,et al.  ABSENCE OF DIFFUSION IN CERTAIN RANDOM LATTICES , 2008 .

[31]  Dirk Poelman,et al.  Composition and size-dependent extinction coefficient of colloidal PbSe quantum dots , 2007 .

[32]  Matthew C Beard,et al.  Time-resolved photoconductivity of PbSe nanocrystal arrays. , 2006, The journal of physical chemistry. B.

[33]  Ludovico Cademartiri,et al.  Multigram scale, solventless, and diffusion-controlled route to highly monodisperse PbS nanocrystals. , 2006, The journal of physical chemistry. B.

[34]  Vicki L. Colvin,et al.  Preparation and Characterization of Monodisperse PbSe Semiconductor Nanocrystals in a Noncoordinating Solvent , 2004 .

[35]  Alexander A. Balandin,et al.  Miniband formation in a quantum dot crystal , 2001 .

[36]  B. Shklovskii,et al.  REVIEWS OF TOPICAL PROBLEMS: Percolation theory and conductivity of strongly inhomogeneous media , 1975 .

[37]  W. Vogel,et al.  Evaluation of paracrystalline distortions from line broadening , 1970 .