Sharp Minima for Multiobjective Optimization in Banach Spaces

We study sharp minima for multiobjective optimization problems. In terms of the Mordukhovich coderivative and the normal cone, we present sufficient and or necessary conditions for existence of such sharp minima, some of which are new even in the single objective setting.

[1]  F. Clarke,et al.  Proximal Smoothness and the Lower{C 2 Property , 1995 .

[2]  J. Burke,et al.  Weak sharp minima revisited Part I: basic theory , 2002 .

[3]  R. Rockafellar,et al.  Local differentiability of distance functions , 2000 .

[4]  Xi Yin Zheng,et al.  Error Bound Moduli for Conic Convex Systems on Banach Spaces , 2004, Math. Oper. Res..

[5]  Chong Li,et al.  On convergence of the Gauss-Newton method for convex composite optimization , 2002, Math. Program..

[6]  B. Mordukhovich Variational analysis and generalized differentiation , 2006 .

[7]  Dinh The Luc,et al.  Convex composite non–Lipschitz programming , 2002, Math. Program..

[8]  Constantin Zualinescu Sharp Estimates for Hoffman's Constant for Systems of Linear Inequalities and Equalities , 2003, SIAM J. Optim..

[9]  Bienvenido Jiménez,et al.  Strict Minimality Conditions in Nondifferentiable Multiobjective Programming , 2003 .

[10]  Xiaoqi Yang,et al.  Convex composite multi-objective nonsmooth programming , 1993, Math. Program..

[11]  D. Azé,et al.  On the Sensitivity Analysis of Hoffman Constants for Systems of Linear Inequalities , 2002, SIAM J. Optim..

[12]  B. Mordukhovich Maximum principle in the problem of time optimal response with nonsmooth constraints PMM vol. 40, n≗ 6, 1976, pp. 1014-1023 , 1976 .

[13]  Michael C. Ferris,et al.  A Gauss—Newton method for convex composite optimization , 1995, Math. Program..

[14]  Alexander Shapiro,et al.  On a Class of Nonsmooth Composite Functions , 2003, Math. Oper. Res..

[15]  Wu Li Sharp Lipschitz Constants for Basic Optimal Solutions and Basic Feasible Solutions of Linear Programs , 1994 .

[16]  Xi Yin Zheng,et al.  Hoffman’s Least Error Bounds for Systems of Linear Inequalities , 2004, J. Glob. Optim..

[17]  Jean-Paul Penot Optimality conditions in mathematical programming and composite optimization , 1994, Math. Program..

[18]  M. R. Osborne,et al.  Strong uniqueness and second order convergence in nonlinear discrete approximation , 1980 .

[19]  O. Nelles,et al.  An Introduction to Optimization , 1996, IEEE Antennas and Propagation Magazine.

[20]  L. Cromme Strong uniqueness , 1978 .

[21]  M. R. Osborne,et al.  Strong uniqueness in sequential linear programming , 1990, The Journal of the Australian Mathematical Society. Series B. Applied Mathematics.

[22]  F. Clarke Optimization And Nonsmooth Analysis , 1983 .

[23]  Jong-Shi Pang,et al.  Error bounds in mathematical programming , 1997, Math. Program..

[24]  M. Ferris,et al.  On the Clarke subdifferential of the distance function of a closed set , 1992 .

[25]  B. Mordukhovich,et al.  Nonsmooth sequential analysis in Asplund spaces , 1996 .

[26]  Robert S. Womersley,et al.  Local properties of algorithms for minimizing nonsmooth composite functions , 1985, Math. Program..

[27]  B. Jiménez Strict Efficiency in Vector Optimization , 2002 .

[28]  A. Daniilidis,et al.  Subsmooth sets: Functional characterizations and related concepts , 2004 .

[29]  A. Lewis,et al.  Error Bounds for Convex Inequality Systems , 1998 .

[30]  Marcin Studniarski,et al.  Weak Sharp Minima: Characterizations and Sufficient Conditions , 1999, SIAM J. Control. Optim..

[31]  R. Rockafellar Directionally Lipschitzian Functions and Subdifferential Calculus , 1979 .

[32]  Vaithilingam Jeyakumar Composite Nonsmooth Programming with Gâteaux Differentiability , 1991, SIAM J. Optim..