A query description model based on basic semantic unit composite petri-nets for soccer video analysis

Digital video networks are making available increasing amounts of sports video data. The volume of material on offer means that sports fans often rely on prepared summaries of game highlights to follow the progress of their favourite teams. A significant application area for automated video analysis technology is the generation of personalized highlights of sports events. One of the most popular sports around world is soccer. A soccer game is composed of a range of significant events, such as goal scoring, fouls, and substitutions. Automatically detecting these events in a soccer video can enable users to interactively design their own highlights programmes. From an analysis of broadcast soccer video, we propose a query description model based on Basic Semantic Unit Composite Petri-Nets (BSUCPN) to automatically detect significant events within soccer video. Firstly we define a Basic Semantic Unit (BSU) set for soccer videos based on identifiable feature elements within a soccer video, Secondly we design Composite Petri-Net (CPN) models for semantic queries and use these to describe BSUCPNs for semantic events in soccer videos. A particular strength of this approach is that users are able to design their own semantic event queries based on BSUCPNs to search interactively within soccer videos. Experimental results based on recorded soccer broadcasts are used to illustrate the potential of this approach