A New Cellular Interactome of SARS-CoV-2 Nucleocapsid Protein and Its Biological Implications

[1]  Hong Zhou,et al.  The SARS-CoV-2 nucleocapsid protein: its role in the viral life cycle, structure and functions, and use as a potential target in the development of vaccines and diagnostics , 2023, Virology Journal.

[2]  H. Oberwinkler,et al.  Acetylsalicylic Acid and Salicylic Acid Inhibit SARS-CoV-2 Replication in Precision-Cut Lung Slices , 2022, bioRxiv.

[3]  S. Cascarina,et al.  Phase separation by the SARS-CoV-2 nucleocapsid protein: Consensus and open questions , 2022, Journal of Biological Chemistry.

[4]  B. Blencowe,et al.  SARS-CoV-2 nucleocapsid protein binds host mRNAs and attenuates stress granules to impair host stress response , 2021, iScience.

[5]  Q. Zhang,et al.  Comparison of viral RNA–host protein interactomes across pathogenic RNA viruses informs rapid antiviral drug discovery for SARS-CoV-2 , 2021, Cell research.

[6]  A. Poso,et al.  SARS‐CoV‐2–host proteome interactions for antiviral drug discovery , 2021, Molecular systems biology.

[7]  Dexter Pratt,et al.  A BioID-derived proximity interactome for SARS-CoV-2 proteins , 2021, bioRxiv.

[8]  Lanjuan Li,et al.  Interactome Analysis of the Nucleocapsid Protein of SARS-CoV-2 Virus , 2021, Pathogens.

[9]  Junjie Chen,et al.  Interactomes of SARS‐CoV‐2 and human coronaviruses reveal host factors potentially affecting pathogenesis , 2021, The EMBO journal.

[10]  Y. Ariumi Host Cellular RNA Helicases Regulate SARS-CoV-2 Infection , 2021, bioRxiv.

[11]  Xiangxi Wang,et al.  The architecture of the SARS-CoV-2 RNA genome inside virion , 2021, Nature Communications.

[12]  Wenjun Liu,et al.  The SARS-CoV-2 Nucleocapsid Protein and Its Role in Viral Structure, Biological Functions, and a Potential Target for Drug or Vaccine Mitigation , 2021, Viruses.

[13]  D. Fidock,et al.  Artemisia annua L. extracts inhibit the in vitro replication of SARS-CoV-2 and two of its variants , 2021, Journal of Ethnopharmacology.

[14]  G. Kozlov,et al.  LARP1 and LARP4: up close with PABP for mRNA 3’ poly(A) protection and stabilization , 2021, RNA biology.

[15]  M. Mann,et al.  Multilevel proteomics reveals host perturbations by SARS-CoV-2 and SARS-CoV , 2020, Nature.

[16]  OUP accepted manuscript , 2021, Journal of Molecular Cell Biology.

[17]  E. Lander,et al.  The SARS-CoV-2 RNA–protein interactome in infected human cells , 2020, Nature Microbiology.

[18]  F. Dèng,et al.  Host restriction of emerging high-pathogenic bunyaviruses via MOV10 by targeting viral nucleoprotein and blocking ribonucleoprotein assembly , 2020, PLoS pathogens.

[19]  Nicolas L. Fawzi,et al.  SARS‐CoV‐2 nucleocapsid protein phase‐separates with RNA and with human hnRNPs , 2020, The EMBO journal.

[20]  G. Gao,et al.  Structures of the SARS‐CoV‐2 nucleocapsid and their perspectives for drug design , 2020, The EMBO journal.

[21]  Brett Larsen,et al.  A SARS-CoV-2 – host proximity interactome , 2020, bioRxiv.

[22]  Georgios A. Pavlopoulos,et al.  Global BioID-based SARS-CoV-2 proteins proximal interactome unveils novel ties between viral polypeptides and host factors involved in multiple COVID19-associated mechanisms , 2020, bioRxiv.

[23]  Xin Wang,et al.  Virus-Host Interactome and Proteomic Survey Reveal Potential Virulence Factors Influencing SARS-CoV-2 Pathogenesis , 2020, Med.

[24]  Ralf Bartenschlager,et al.  SARS-CoV-2 structure and replication characterized by in situ cryo-electron tomography , 2020, Nature Communications.

[25]  M. Zweckstetter,et al.  Nucleocapsid protein of SARS-CoV-2 phase separates into RNA-rich polymerase-containing condensates , 2020, Nature Communications.

[26]  Maxwell I. Zimmerman,et al.  The SARS-CoV-2 nucleocapsid protein is dynamic, disordered, and phase separates with RNA , 2020, bioRxiv.

[27]  S. Tsiodras,et al.  COVID-19: The Potential Role of Copper and N-acetylcysteine (NAC) in a Combination of Candidate Antiviral Treatments Against SARS-CoV-2. , 2020, In vivo.

[28]  F. Dèng,et al.  A RIG-I–like receptor directs antiviral responses to a bunyavirus and is antagonized by virus-induced blockade of TRIM25-mediated ubiquitination , 2020, The Journal of Biological Chemistry.

[29]  Benjamin J. Polacco,et al.  A SARS-CoV-2 Protein Interaction Map Reveals Targets for Drug-Repurposing , 2020, Nature.

[30]  Zhigang Wu,et al.  Molecular Architecture of the SARS-CoV-2 Virus , 2020, Cell.

[31]  F. Dèng,et al.  Guertu virus NSs protein disrupts host defense by blocking antiviral interferon induction and action. , 2020, ACS infectious diseases.

[32]  E. Holmes,et al.  A new coronavirus associated with human respiratory disease in China , 2020, Nature.

[33]  Zhìhóng Hú,et al.  Heartland virus antagonizes type I and III interferon antiviral signaling by inhibiting phosphorylation and nuclear translocation of STAT2 and STAT1 , 2019, The Journal of Biological Chemistry.

[34]  Damian Szklarczyk,et al.  STRING v11: protein–protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets , 2018, Nucleic Acids Res..

[35]  David S. Wishart,et al.  DrugBank 5.0: a major update to the DrugBank database for 2018 , 2017, Nucleic Acids Res..

[36]  Wei Wu,et al.  Cellular RNA Helicase DDX1 Is Involved in Transmissible Gastroenteritis Virus nsp14-Induced Interferon-Beta Production , 2017, Front. Immunol..

[37]  C. D. de Haan,et al.  Coronavirus nucleocapsid proteins assemble constitutively in high molecular oligomers , 2017, Scientific Reports.

[38]  J. Williamson,et al.  A DEAD-box protein acts through RNA to promote HIV-1 Rev-RRE assembly , 2017, Nucleic acids research.

[39]  R. Parker,et al.  Principles and Properties of Stress Granules. , 2016, Trends in cell biology.

[40]  Anne-Claude Gingras,et al.  Proximity biotinylation and affinity purification are complementary approaches for the interactome mapping of chromatin-associated protein complexes. , 2015, Journal of proteomics.

[41]  J. Reinstein,et al.  Synergistic effects of ATP and RNA binding to human DEAD-box protein DDX1 , 2015, Nucleic acids research.

[42]  W. Cao,et al.  Disruption of Type I Interferon Signaling by the Nonstructural Protein of Severe Fever with Thrombocytopenia Syndrome Virus via the Hijacking of STAT2 and STAT1 into Inclusion Bodies , 2015, Journal of Virology.

[43]  Pei-Jer Chen,et al.  Nucleocapsid Phosphorylation and RNA Helicase DDX1 Recruitment Enables Coronavirus Transition from Discontinuous to Continuous Transcription , 2014, Cell Host & Microbe.

[44]  Philippe Bardou,et al.  jvenn: an interactive Venn diagram viewer , 2014, BMC Bioinformatics.

[45]  W. Liu,et al.  Viral suppression of innate immunity via spatial isolation of TBK1/IKKε from mitochondrial antiviral platform , 2014, Journal of molecular cell biology.

[46]  C. Hsiao,et al.  The SARS coronavirus nucleocapsid protein – Forms and functions , 2014, Antiviral Research.

[47]  E. Zhou,et al.  The Cellular Interactome of the Coronavirus Infectious Bronchitis Virus Nucleocapsid Protein and Functional Implications for Virus Biology , 2013, Journal of Virology.

[48]  R. Lloyd Regulation of stress granules and P‐bodies during RNA virus infection , 2013, Wiley interdisciplinary reviews. RNA.

[49]  Guangchuang Yu,et al.  clusterProfiler: an R package for comparing biological themes among gene clusters. , 2012, Omics : a journal of integrative biology.

[50]  Wade H. Dunham,et al.  Affinity‐purification coupled to mass spectrometry: Basic principles and strategies , 2012, Proteomics.

[51]  J. Williamson,et al.  DDX1 Is an RNA-Dependent ATPase Involved in HIV-1 Rev Function and Virus Replication , 2011, Journal of Molecular Biology.

[52]  G. Cheng,et al.  DDX1, DDX21, and DHX36 helicases form a complex with the adaptor molecule TRIF to sense dsRNA in dendritic cells. , 2011, Immunity.

[53]  G. Gao,et al.  DEXH-Box protein DHX30 is required for optimal function of the zinc-finger antiviral protein , 2010, Protein & Cell.

[54]  D. Liu,et al.  The Cellular RNA Helicase DDX1 Interacts with Coronavirus Nonstructural Protein 14 and Enhances Viral Replication , 2010, Journal of Virology.

[55]  Jon Lorsch,et al.  Translation initiation : cell biology, high-throughput methods, and chemical-based approaches , 2007 .

[56]  P. Anderson,et al.  Mammalian stress granules and processing bodies. , 2007, Methods in enzymology.

[57]  P. Shannon,et al.  Cytoscape: a software environment for integrated models of biomolecular interaction networks. , 2003, Genome research.

[58]  B. Hogue,et al.  Host Protein Interactions with the 3′ End of Bovine Coronavirus RNA and the Requirement of the Poly(A) Tail for Coronavirus Defective Genome Replication , 2000, Journal of Virology.

[59]  D. J. Manno,et al.  Mouse hepatitis virus nucleocapsid protein as a translational effector of viral mRNAs. , 1998, Advances in experimental medicine and biology.

[60]  S. Tahara,et al.  Coronavirus Translational Regulation: Leader Affects mRNA Efficiency , 1994, Virology.