A collective relaxation model for resistance drift in phase change memory cells

Phase change memory (PCM) cells rely on the orders of magnitude difference in resistivity between the crystalline and amorphous phases to store information. However, the temporal evolution of the resistance of the amorphous phase, commonly referred to as resistance drift, is a key challenge for the realization of multi-level PCM. In this article, we present a comprehensive description of the time-temperature dependence of the resistance variation in a PCM cell. Our model consists of a structural relaxation model and an electrical transport model. The structural relaxation model is based on the idea that the atomic configuration of the melt-quenched amorphous phase as a whole collectively relaxes towards a more favorable equilibrium state. Experimental results obtained over a wide range of temperatures and times show remarkable agreement with the proposed model.

[1]  Laurent Dellmann,et al.  Changes in electrical transport and density of states of phase change materials upon resistance drift , 2014 .

[2]  I. Karpov,et al.  Fundamental drift of parameters in chalcogenide phase change memory , 2007 .

[3]  Geoffrey W. Burr,et al.  Nanoscale electronic synapses using phase change devices , 2013, JETC.

[4]  M. Breitwisch,et al.  Estimation of amorphous fraction in multilevel phase change memory cells , 2010, 2009 Proceedings of the European Solid State Device Research Conference.

[5]  Haralampos Pozidis,et al.  Programming algorithms for multilevel phase-change memory , 2011, 2011 IEEE International Symposium of Circuits and Systems (ISCAS).

[6]  W. Marsden I and J , 2012 .

[7]  D. Ielmini,et al.  Physical mechanism and temperature acceleration of relaxation effects in phase-change memory cells , 2008, 2008 IEEE International Reliability Physics Symposium.

[8]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[9]  Eric Larose,et al.  A Physical Interpretation of , 2005 .

[10]  Matthias Wuttig,et al.  Impact of DoS changes on resistance drift and threshold switching in amorphous phase change materials , 2012 .

[11]  Y. P. Varshni Temperature dependence of the energy gap in semiconductors , 1967 .

[12]  A. Knoll,et al.  Relaxation kinetics of nanoscale indents in a polymer glass. , 2009, Physical review letters.

[13]  M. Breitwisch,et al.  Novel Lithography-Independent Pore Phase Change Memory , 2007, 2007 IEEE Symposium on VLSI Technology.

[14]  Daniel Krebs,et al.  The influence of resistance drift on measurements of the activation energy of conduction for phase-change material in random access memory line cells , 2012 .

[15]  D. Ielmini,et al.  Physical interpretation, modeling and impact on phase change memory (PCM) reliability of resistance drift due to chalcogenide structural relaxation , 2007, 2007 IEEE International Electron Devices Meeting.

[16]  P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .

[17]  R. Bez,et al.  Phase-change memory technology for embedded applications , 2004, Proceedings of the 30th European Solid-State Circuits Conference (IEEE Cat. No.04EX850).

[18]  Daniel Krebs,et al.  Crystal growth within a phase change memory cell , 2014, Nature Communications.

[19]  D. Ielmini,et al.  Reliability Impact of Chalcogenide-Structure Relaxation in Phase-Change Memory (PCM) Cells—Part II: Physics-Based Modeling , 2009, IEEE Transactions on Electron Devices.

[20]  Byoungil Lee,et al.  Nanoelectronic programmable synapses based on phase change materials for brain-inspired computing. , 2012, Nano letters.

[21]  Aaas News,et al.  Book Reviews , 1893, Buffalo Medical and Surgical Journal.

[22]  M.R.J. Gibbs,et al.  Activation energy spectra and relaxation in amorphous materials , 1983 .

[23]  Daniele Ielmini,et al.  Physical origin of the resistance drift exponent in amorphous phase change materials , 2011 .

[24]  R. Stephenson A and V , 1962, The British journal of ophthalmology.

[25]  P. Fantini,et al.  Band gap widening with time induced by structural relaxation in amorphous Ge2Sb2Te5 films , 2012 .

[26]  Haralampos Pozidis,et al.  Non-resistance-based cell-state metric for phase-change memory , 2011 .