Passivity preserving model reduction in the context of spectral zero interpolation

Passivity preserving model reduction in the context of spectral zero interpolation

[1]  Thomas Kailath,et al.  Linear Systems , 1980 .

[2]  P. Pellanda,et al.  Computation of Transfer Function Dominant Zeros With Applications to Oscillation Damping Control of Large Power Systems , 2007, IEEE Transactions on Power Systems.

[3]  Timo Palenius,et al.  Efficient Time-domain Simulation of Interconnects Characterized by Large Rlc Circuits or Tabulated S Parameters , 2004 .

[4]  Sheldon X.-D. Tan,et al.  Advanced Model Order Reduction Techniques in VLSI Design , 2007 .

[5]  Daniel Kressner,et al.  Numerical Methods for General and Structured Eigenvalue Problems , 2005, Lecture Notes in Computational Science and Engineering.

[6]  Danny C. Sorensen,et al.  Passivity preserving model reduction via interpolation of spectral zeros , 2003, 2003 European Control Conference (ECC).

[7]  Peter Benner,et al.  Partial realization of descriptor systems , 2006, Syst. Control. Lett..

[8]  Peter Benner,et al.  Numerical Linear Algebra for Model Reduction in Control and Simulation , 2006 .

[9]  Daniel B. Szyld,et al.  The matrix eigenvalue problem: GR and Krylov subspace methods , 2009, Math. Comput..

[10]  Andras Varga,et al.  Enhanced Modal Approach for Model Reduction , 1995 .

[11]  Hung Dinh Nong,et al.  Passivity Preserving Model Reduction via Interpolation of Spectral Zeros: Selection Criteria and Implementation , 2007 .

[12]  Joel R. Phillips,et al.  Poor man's TBR: a simple model reduction scheme , 2004 .

[13]  Richard James Duffin,et al.  Impedance Synthesis without Use of Transformers , 1949 .

[14]  Timo Reis,et al.  Passivity‐preserving model reduction of differential‐algebraic equations in circuit simulation , 2007 .

[15]  Paul Van Dooren,et al.  A collection of benchmark examples for model reduction of linear time invariant dynamical systems. , 2002 .

[16]  Joost Rommes,et al.  Methods for eigenvalue problems with applications in model order reduction , 2007 .

[17]  Gerard L. G. Sleijpen,et al.  Convergence of the Dominant Pole Algorithm and Rayleigh Quotient Iteration , 2008, SIAM J. Matrix Anal. Appl..

[18]  Eric James Grimme,et al.  Krylov Projection Methods for Model Reduction , 1997 .

[19]  N. Martins,et al.  Efficient computation of transfer function dominant poles using subspace acceleration , 2006, IEEE Transactions on Power Systems.

[20]  Athanasios C. Antoulas,et al.  Approximation of Large-Scale Dynamical Systems , 2005, Advances in Design and Control.

[21]  N. Martins,et al.  Efficient Computation of Multivariable Transfer Function Dominant Poles Using Subspace Acceleration , 2006, IEEE Transactions on Power Systems.

[22]  E. Davison,et al.  On "A method for simplifying linear dynamic systems" , 1966 .

[23]  Lawrence T. Pileggi,et al.  Robust and passive model order reduction for circuits containing susceptance elements , 2002, ICCAD 2002.

[24]  Athanasios C. Antoulas,et al.  A new result on passivity preserving model reduction , 2005, Syst. Control. Lett..

[25]  V. Belevitch On the Bott-Duffin Synthesis of Driving-Point Impedances , 1954 .

[26]  L. Dai,et al.  Singular Control Systems , 1989, Lecture Notes in Control and Information Sciences.

[27]  Alan J. Laub,et al.  On the Iterative Solution of a Class of Nonsymmetric Algebraic Riccati Equations , 2000, SIAM J. Matrix Anal. Appl..

[28]  Roland W. Freund SPRIM: structure-preserving reduced-order interconnect macromodeling , 2004, ICCAD 2004.

[29]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[30]  Roxana Ionutiu,et al.  Passivity-Preserving Model Reduction Using Dominant Spectral-Zero Interpolation , 2008, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.