Three biotechnical processes using Ashbya gossypii, Candida famata, or Bacillus subtilis compete with chemical riboflavin production

[1]  E. Vandamme,et al.  Production of vitamins, coenzymes and related biochemicals by biotechnological processes. , 2007, Journal of chemical technology and biotechnology.

[2]  T. Gura New Genes Boost Rice Nutrients , 1999, Science.

[3]  A. Cashmore,et al.  Cryptochromes: blue light receptors for plants and animals. , 1999, Science.

[4]  J. Revuelta,et al.  Physiological Consequence of Disruption of the VMA1Gene in the Riboflavin Overproducer Ashbya gossypii * , 1999, The Journal of Biological Chemistry.

[5]  J. Revuelta,et al.  Isocitrate lyase of Ashbya gossypii – transcriptional regulation and peroxisomal localization , 1999, FEBS letters.

[6]  H. Sahm,et al.  Threonine Aldolase Overexpression plus Threonine Supplementation Enhanced Riboflavin Production inAshbya gossypii , 1998, Applied and Environmental Microbiology.

[7]  A. Sancar,et al.  Vitamin B2-based blue-light photoreceptors in the retinohypothalamic tract as the photoactive pigments for setting the circadian clock in mammals. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[8]  A. van Loon,et al.  Regulation of Riboflavin Biosynthesis inBacillus subtilis Is Affected by the Activity of the Flavokinase/Flavin Adenine Dinucleotide Synthetase Encoded byribC , 1998, Journal of bacteriology.

[9]  P. Beyer,et al.  Transgenic rice (Oryza sativa) endosperm expressing daffodil (Narcissus pseudonarcissus) phytoene synthase accumulates phytoene, a key intermediate of provitamin A biosynthesis. , 1997, The Plant journal : for cell and molecular biology.

[10]  M. Ott,et al.  Molecular cloning and characterisation of the ribC gene from Bacillus subtilis : a point mutation in ribC results in riboflavin overproduction , 1997, Molecular and General Genetics MGG.

[11]  H. Sahm,et al.  Regulation and properties of a fungal lipase showing interfacial inactivation by gas bubbles, or droplets of lipid or fatty acid. , 1997, European journal of biochemistry.

[12]  U. Sauer,et al.  Physiology and metabolic fluxes of wild-type and riboflavin-producing Bacillus subtilis , 1996, Applied and environmental microbiology.

[13]  H. Hohmann,et al.  Development of a Fermentation Process for the Manufacture of Riboflavin , 1996, CHIMIA.

[14]  H. Sahm,et al.  Correlation of isocitrate lyase activity and riboflavin formation in the riboflavin overproducer Ashbya gossypii. , 1996, Microbiology.

[15]  H. Sahm,et al.  Inhibition of purified isocitrate lyase identified itaconate and oxalate as potential antimetabolites for the riboflavin overproducer Ashbya gossypii. , 1996, Microbiology.

[16]  P. Philippsen,et al.  Homologous recombination as the main mechanism for DNA integration and cause of rearrangements in the filamentous ascomycete Ashbya gossypii. , 1995, Genetics.

[17]  J. Martín,et al.  Exogenous methionine increases levels of mRNAs transcribed from pcbAB, pcbC, and cefEF genes, encoding enzymes of the cephalosporin biosynthetic pathway, in Acremonium chrysogenum , 1994, Journal of bacteriology.

[18]  P. Philippsen,et al.  Replicative transformation of the filamentous fungus Ashbya gossypii with plasmids containing Saccharomyces cerevisiae ARS elements. , 1991, Gene.

[19]  P. Nygaard,et al.  Genetic and physiological characterization of Bacillus subtilis mutants resistant to purine analogs , 1987, Journal of bacteriology.

[20]  Y. Hirose,et al.  Production of guanosine by psicofuranine and decoyinine resistant mutants of Bacillus subtilis. , 1979 .

[21]  G. Brown,et al.  Presence of Escherichia coli of a deaminase and a reductase involved in biosynthesis of riboflavin , 1978, Journal of bacteriology.

[22]  Y. Hirose,et al.  Mutation of an inosine-producing strain of Bacillus subtilis to DL-methionine sulfoxide resistance for guanosine production , 1977, Applied and environmental microbiology.

[23]  G. Plaut Biosynthesis of riboflavin. II. Incorporation of C14-labeled compounds into ring A. , 1954, The Journal of biological chemistry.

[24]  N. Hannett,et al.  Genetic engineering of Bacillus subtilis for the commercial production of riboflavin , 1999, Journal of Industrial Microbiology and Biotechnology.

[25]  A. Bacher,et al.  GTP cyclohydrolase II and 3,4-dihydroxy-2-butanone 4-phosphate synthase are rate-limiting enzymes in riboflavin synthesis of an industrial Bacillus subtilis strain used for riboflavin production , 1999, Journal of Industrial Microbiology and Biotechnology.

[26]  I. Gusarov,et al.  PRIMARY STRUCTURE AND FUNCTIONAL ACTIVITY OF THE BACILLUS SUBTILIS GENE RIBC , 1997 .

[27]  G. Himmler,et al.  SEQUENCES OF RIBOSOMAL GENES AND INTERNAL TRANSCRIBED SPACERS MOVE THREE PLANT PARASITIC FUNGI, EREMOTHECIUM ASHBYI, ASHBYA GOSSYPII, AND NEMATOSPORA CORYLI, TOWARDS SACCHAROMYCES CEREVISIAE , 1995 .

[28]  J. Perkins,et al.  Biosynthesis of Riboflavin, Biotin, Folic Acid, and Cobalamin , 1993 .

[29]  R. Losick,et al.  Bacillus Subtilis and Other Gram-Positive Bacteria: Biochemistry, Physiology, and Molecular Genetics , 1993 .

[30]  H. Hiller In: Ullmann''''s Encyclopedia of Industrial Chemistry , 1989 .

[31]  L. Kaplan,et al.  VITAMIN FERMENTATIONS: B2 AND B12 , 1981 .

[32]  D. Perlman Chapter 16 – Microbial Process for Riboflavin Production , 1979 .

[33]  L. J. Wickerham,et al.  The production of riboflavin by Ashbya gossypii. , 1946, Archives of biochemistry.