A proteomic view of the Plasmodium falciparum life cycle

[1]  A. Krogh,et al.  Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. , 2001, Journal of molecular biology.

[2]  R. Sinden,et al.  Identification of xanthurenic acid as the putative inducer of malaria development in the mosquito , 1998, Nature.

[3]  P Bork,et al.  Sequence properties of GPI-anchored proteins near the omega-site: constraints for the polypeptide binding site of the putative transamidase. , 1998, Protein engineering.

[4]  R. Wilson,et al.  Actomyosin motor in the merozoite of the malaria parasite, Plasmodium falciparum: implications for red cell invasion. , 1998, Journal of cell science.

[5]  T. Wellems,et al.  Membrane modifications in erythrocytes parasitized by Plasmodium falciparum. , 1996, Molecular and biochemical parasitology.

[6]  S. Brunak,et al.  SHORT COMMUNICATION Identification of prokaryotic and eukaryotic signal peptides and prediction of their cleavage sites , 1997 .

[7]  Jun Liu,et al.  Four plasmepsins are active in the Plasmodium falciparum food vacuole, including a protease with an active-site histidine , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[8]  Koen J. Dechering,et al.  Isolation and Functional Characterization of Two Distinct Sexual-Stage-Specific Promoters of the Human Malaria Parasite Plasmodium falciparum , 1999, Molecular and Cellular Biology.

[9]  Stephen M. Mount,et al.  The genome sequence of Drosophila melanogaster. , 2000, Science.

[10]  J. K. Moch,et al.  Erythrocytic malaria growth or invasion inhibition assays with emphasis on suspension culture GIA. , 2002, Methods in molecular medicine.

[11]  D. Goldberg,et al.  Biological roles of proteases in parasitic protozoa. , 2002, Annual review of biochemistry.

[12]  F. Baas,et al.  The Human Transcriptome Map: Clustering of Highly Expressed Genes in Chromosomal Domains , 2001, Science.

[13]  Jonathan E. Allen,et al.  Genome sequence and comparative analysis of the model rodent malaria parasite Plasmodium yoelii yoelii , 2002, Nature.

[14]  T. Triglia,et al.  Plasmodium falciparum Homologue of the Genes for Plasmodium vivax and Plasmodium yoeliiAdhesive Proteins, Which Is Transcribed but Not Translated , 2001, Infection and Immunity.

[15]  S. Hoffman,et al.  Evaluation of an in vitro assay aimed at measuring protective antibodies against sporozoites. , 1990, Bulletin of the World Health Organization.

[16]  J. K. Moch,et al.  Automated synchronization of Plasmodium falciparum parasites by culture in a temperature-cycling incubator. , 2002, Methods in molecular medicine.

[17]  E. Winzeler,et al.  Genomics, gene expression and DNA arrays , 2000, Nature.

[18]  S. Kyes,et al.  Rifins: a second family of clonally variant proteins expressed on the surface of red cells infected with Plasmodium falciparum. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[19]  R. Sinden,et al.  CTRP is essential for mosquito infection by malaria ookinetes , 1999, The EMBO journal.

[20]  Martin J. Lercher,et al.  Clustering of housekeeping genes provides a unified model of gene order in the human genome , 2002, Nature Genetics.

[21]  J. Yates,et al.  DTASelect and Contrast: tools for assembling and comparing protein identifications from shotgun proteomics. , 2002, Journal of proteome research.

[22]  M. Bawden,et al.  Rapid, large-scale isolation of Plasmodium berghei sporozoites from infected mosquitoes. , 1979, The Journal of parasitology.

[23]  R. Carter,et al.  The culture and preparation of gametocytes of Plasmodium falciparum for immunochemical, molecular, and mosquito infectivity studies. , 1993, Methods in molecular biology.

[24]  E V Koonin,et al.  Chromosome 2 sequence of the human malaria parasite Plasmodium falciparum. , 1998, Science.

[25]  S. Howell,et al.  The high molecular mass rhoptry protein, RhopH1, is encoded by members of the clag multigene family in Plasmodium falciparum and Plasmodium yoelii. , 2001, Molecular and biochemical parasitology.

[26]  A. Cowman,et al.  Isolate-specific S-antigen of Plasmodium falciparum contains a repeated sequence of eleven amino acids , 1983, Nature.

[27]  P. Brown,et al.  Shotgun DNA microarrays and stage‐specific gene expression in Plasmodium falciparum malaria , 2000, Molecular microbiology.

[28]  J. Yates,et al.  Large-scale analysis of the yeast proteome by multidimensional protein identification technology , 2001, Nature Biotechnology.

[29]  R. Aebersold,et al.  Analysis of membrane proteins by two‐dimensional electrophoresis: Comparison of the proteins extracted from normal or Plasmodium falciparum ‐ infected erythrocyte ghosts , 1999, Electrophoresis.

[30]  A. Cowman,et al.  clag9: A cytoadherence gene in Plasmodium falciparum essential for binding of parasitized erythrocytes to CD36. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[31]  Dmitrij Frishman,et al.  MIPS: a database for genomes and protein sequences , 1999, Nucleic Acids Res..

[32]  J. Adams,et al.  Exploring the transcriptome of the malaria sporozoite stage , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[33]  S. Krungkrai,et al.  Ultrastructure and function of mitochondria in gametocytic stage of Plasmodium falciparum. , 2000, Parasite.

[34]  D. Goldberg,et al.  Identification and Characterization of Falcilysin, a Metallopeptidase Involved in Hemoglobin Catabolism within the Malaria Parasite Plasmodium falciparum* , 1999, The Journal of Biological Chemistry.

[35]  Bart Barrell,et al.  A superfamily of variant genes encoded in the subtelomeric region of Plasmodium vivax , 2001, Nature.

[36]  Jonathan E. Allen,et al.  Genome sequence of the human malaria parasite Plasmodium falciparum , 2002, Nature.

[37]  R. Sinden,et al.  Regulation of infectivity of Plasmodium to the mosquito vector. , 1996, Advances in parasitology.

[38]  Christian Hott,et al.  Co‐ordinated programme of gene expression during asexual intraerythrocytic development of the human malaria parasite Plasmodium falciparum revealed by microarray analysis , 2001, Molecular microbiology.

[39]  P. Rosenthal,et al.  Cysteine proteases of malaria parasites: targets for chemotherapy. , 2002, Current pharmaceutical design.

[40]  M. Blackman,et al.  Purification of Plasmodium falciparum merozoites for analysis of the processing of merozoite surface protein-1. , 1994, Methods in cell biology.

[41]  T. Wellems,et al.  Expressed var genes are found in Plasmodium falciparum subtelomeric regions , 1997, Molecular and cellular biology.

[42]  G. Church,et al.  A computational analysis of whole-genome expression data reveals chromosomal domains of gene expression , 2000, Nature Genetics.

[43]  H. Ginsburg,et al.  Metabolic interconnection between the human malarial parasite Plasmodium falciparum and its host erythrocyte. Regulation of ATP levels by means of an adenylate translocator and adenylate kinase. , 1989, The Journal of biological chemistry.

[44]  J. Yates,et al.  An approach to correlate tandem mass spectral data of peptides with amino acid sequences in a protein database , 1994, Journal of the American Society for Mass Spectrometry.