Estimation methods for ranking recent information

Temporal aspects of documents can impact relevance for certain kinds of queries. In this paper, we build on earlier work of modeling temporal information. We propose an extension to the Query Likelihood Model that incorporates query-specific information to estimate rate parameters, and we introduce a temporal factor into language model smoothing and query expansion using pseudo-relevance feedback. We evaluate these extensions using a Twitter corpus and two newspaper article collections. Results suggest that, compared to prior approaches, our models are more effective at capturing the temporal variability of relevance associated with some topics.

[1]  Fernando Diaz,et al.  Time is of the essence: improving recency ranking using Twitter data , 2010, WWW '10.

[2]  Stephen E. Robertson,et al.  Okapi at TREC-3 , 1994, TREC.

[3]  Jure Leskovec,et al.  Patterns of temporal variation in online media , 2011, WSDM '11.

[4]  Susan T. Dumais,et al.  A longitudinal study of how highlighting web content change affects people's web interactions , 2010, CHI.

[5]  Michael S. Bernstein,et al.  Eddi: interactive topic-based browsing of social status streams , 2010, UIST.

[6]  Stephen E. Robertson,et al.  GatfordCentre for Interactive Systems ResearchDepartment of Information , 1996 .

[7]  Jie Tang,et al.  Proceedings of the 2nd ACM workshop on Social web search and mining , 2009, CIKM 2009.

[8]  John D. Lafferty,et al.  Model-based feedback in the language modeling approach to information retrieval , 2001, CIKM '01.

[9]  Meredith Ringel Morris,et al.  What do people ask their social networks, and why?: a survey study of status message q&a behavior , 2010, CHI.

[10]  W. Bruce Croft,et al.  Time-based language models , 2003, CIKM '03.

[11]  W. M. Bolstad Introduction to Bayesian Statistics , 2004 .

[12]  Ellen M. Voorhees,et al.  TREC: Continuing information retrieval's tradition of experimentation , 2007, CACM.

[13]  W. Bruce Croft,et al.  Relevance-Based Language Models , 2001, SIGIR '01.

[14]  Brian D. Davison,et al.  Freshness matters: in flowers, food, and web authority , 2010, SIGIR.

[15]  Damon Horowitz,et al.  The anatomy of a large-scale social search engine , 2010, WWW '10.

[16]  Susan T. Dumais,et al.  The web changes everything: understanding the dynamics of web content , 2009, WSDM '09.

[17]  ChengXiang Zhai,et al.  Statistical Language Models for Information Retrieval: A Critical Review , 2008, Found. Trends Inf. Retr..

[18]  Gerard Salton,et al.  Research and Development in Information Retrieval , 1982, Lecture Notes in Computer Science.

[19]  Luis Gravano,et al.  Answering General Time-Sensitive Queries , 2012, IEEE Trans. Knowl. Data Eng..

[20]  Ed H. Chi,et al.  Towards a model of understanding social search , 2008, SSM '08.

[21]  Miles Efron,et al.  Questions are content: A taxonomy of questions in a microblogging environment , 2010, ASIST.

[22]  W. Bruce Croft,et al.  A language modeling approach to information retrieval , 1998, SIGIR '98.

[23]  Jeremy Pickens,et al.  Ranked feature fusion models for ad hoc retrieval , 2008, CIKM '08.

[24]  Miles Efron,et al.  Hashtag retrieval in a microblogging environment , 2010, SIGIR.

[25]  Fernando Diaz,et al.  Temporal profiles of queries , 2007, TOIS.

[26]  CHENGXIANG ZHAI,et al.  A study of smoothing methods for language models applied to information retrieval , 2004, TOIS.