Diffusion in multicomponent systems: a free energy approach

Abstract This work examines diffusion in ternary non-ideal systems and derives coupled non-linear equations based on a non-equilibrium thermodynamic approach in which an explicit expression for the free energy is substituted into standard diffusion equations. For ideal solutions, the equations employ four mobility parameters ( M aa , M ab , M ba , and M bb ), and uphill diffusion is predicted for certain initial conditions and combinations of mobilities. For the more complex case of ternary Simple Mixtures, two non-ideality parameters ( χ ac and χ bc ) that are directly related to the excess free energy of mixing are introduced. The solution of the equations is carried out by means of two different numerical schemes: (1) spectral collocation and (2) finite element. An error minimization technique is coupled with the spectral collocation method and applied to diffusional profiles to extract the M and χ parameters. The model satisfactorily reproduces diffusional profiles from published data for silicate melts. Further improvements in numerical and experimental techniques are then suggested.

[1]  L. Trefethen Spectral Methods in MATLAB , 2000 .

[2]  Youxue Zhang A modified effective binary diffusion model , 1993 .

[3]  J. Davidson,et al.  Small-scale disequilibrium in a magmatic inclusion and its more silicic host , 1990 .

[4]  Hiroaki Sato Diffusion coronas around quartz xenocrysts in andesite and basalt from Tertiary volcanic region in northeastern Shikoku, Japan , 1975 .

[5]  E. Watson,et al.  Diffusion in silicate melts: II. Multicomponent diffusion in CaOAl2O3SiO2 at 1500°C and 1 GPa , 1996 .

[6]  Y. Oishi Analysis of Ternary Diffusion: Solutions of Diffusion Equations and Calculated Concentration Distribution , 1965 .

[7]  J. A. Pask,et al.  Analysis of Liquid‐State Interdiffusion in the System CaO‐Al2O3‐SiO2 Using Multiatomic Ion Models , 1982 .

[8]  D. Dingwell,et al.  Multicomponent diffusion in ternary silicate melts in the system K2O-Al2O3-SiO2: I. Experimental measurements , 1995 .

[9]  Yongho Sohn,et al.  A double-serpentine diffusion path for a ternary diffusion couple , 2000 .

[10]  H. L. Toor Diffusion in three‐component gas mixtures , 1957 .

[11]  E. Bruce Nauman,et al.  Nonlinear diffusion and phase separation , 2001 .

[12]  D. Dingwell,et al.  Multicomponent diffusion in ternary silicate melts in the system K2O-A12O3-SiO2: II. Mechanisms, systematics, and geological applications , 1995 .

[13]  S. Saxena,et al.  Mixtures and mineral reactions , 1987 .

[14]  M. Dayananda,et al.  Zero-flux planes and flux reversals in Cu−Ni−Zn diffusion couples , 1979 .

[15]  E. Watson Basalt contamination by continental crust: Some experiments and models , 1982 .

[16]  Youxue Zhang,et al.  Diffusive crystal dissolution , 1989 .

[17]  P. Mazur,et al.  Non-equilibrium thermodynamics, , 1963 .

[18]  A. R. Cooper,et al.  The /D/ matrix for multicomponent diffusion , 1971 .

[19]  A. R. Cooper,et al.  DIFFUSION IN THE SYSTEM KO--SrO--SiO. III. INTERDIFFUSION COEFFICIENTS. , 1972 .

[20]  H. Wakabayashi,et al.  Liquid‐state diffusion of Na2O–CaO–SiO2 system , 1978 .

[21]  Donald G. Miller Ternary Isothermal Diffusion and the Validity of the Onsager Reciprocity Relations , 1959 .

[22]  T. Nishiyama Uphill diffusion and a new nonlinear diffusion equation in ternary non-electrolyte system , 1998 .

[23]  M. Ghiorso,et al.  Multicomponent diffusion in MgO-Al2O3-SiO2 and CaO-MgO-Al2O3-SiO2 melts , 1993 .

[24]  Brian Berkowitz,et al.  Time behavior of solute transport in heterogeneous media: transition from anomalous to normal transport , 2003 .

[25]  F. Spera,et al.  Measuring the multicomponent diffusion matrix: Experimental design and data analysis for silicate melts , 1994 .

[26]  Van Ness,et al.  Classical thermodynamics of non-electrolyte solutions , 1964 .

[27]  R. Krishna,et al.  The Maxwell-Stefan approach to mass transfer , 1997 .

[28]  T. Dewers,et al.  Dissolution of Corundum and Andalusite in H2O-Saturated Haplogranitic Melts at 800°C and 200 MPa: Constraints on Diffusivities and the Generation of Peraluminous Melts , 2002 .

[29]  E. Watson,et al.  Convection in multicomponent silicate melts driven by coupled diffusion , 1994, Nature.

[30]  S. Chakraborty Relationships between Thermodynamic Mixing and Diffusive Transport in Multicomponent Solutions: Some Constraints and Potential Applications , 1994 .

[31]  J. E. Hilliard,et al.  Free Energy of a Nonuniform System. I. Interfacial Free Energy , 1958 .