Lesions detection on 3D brain MRI using trimmmed likelihood estimator and probabilistic atlas

this paper, we present a new automatic robust algorithm to segment multimodal brain MR images with Multiple Sclerosis (MS) lesions. The method performs tissue classification using a Hidden Markov Chain (HMC) model and detects MS lesions as outliers to the model. For this aim, we use the Trimmed Likelihood Estimator (TLE) to extract outliers. Furthermore, neighborhood information is included using the HMC model and we propose to incorporate a priori information brought by a probabilistic atlas. Tests on Brainweb images with MS lesions have been carried out to validate this approach.

[1]  Peter J. Rousseeuw,et al.  Robust Regression and Outlier Detection , 2005, Wiley Series in Probability and Statistics.

[2]  Stefan Van Aelst,et al.  Theory and applications of recent robust methods , 2004 .

[3]  Sei-ichiro Kamata,et al.  An address generator for a 3-dimensional pseudo-Hilbert scan in a cuboid region , 1999, Proceedings 1999 International Conference on Image Processing (Cat. 99CH36348).

[4]  Pierre Hellier,et al.  STREM: A Robust Multidimensional Parametric Method to Segment MS Lesions in MRI , 2005, MICCAI.

[5]  N. M. Neykov,et al.  Generalized d-fullness Technique for Breakdown Point Study of the Trimmed Likelihood Estimator with Application , 2003 .

[6]  Christophe Collet,et al.  Triplet Markov chain for 3D MRI brain segmentation using a probabilistic atlas , 2006, 3rd IEEE International Symposium on Biomedical Imaging: Nano to Macro, 2006..

[7]  Peter J. Rousseeuw,et al.  Robust regression and outlier detection , 1987 .

[8]  Reto Meuli,et al.  Robust parameter estimation of intensity distributions for brain magnetic resonance images , 1998, IEEE Transactions on Medical Imaging.

[9]  P. Čížek,et al.  Robust Estimation in Nonlinear Regression and Limited Dependent Variable Models , 2001 .

[10]  Florence Tupin,et al.  Unsupervised classification of radar images using hidden Markov chains and hidden Markov random fields , 2003, IEEE Trans. Geosci. Remote. Sens..

[11]  M. A. Tanner,et al.  Tools for Statistical Inference: Methods for the Exploration of Posterior Distributions and Likelihood Functions, 3rd Edition , 1998 .

[12]  Alan C. Evans,et al.  An Extensible MRI Simulator for Post-Processing Evaluation , 1996, VBC.

[13]  A. Hadi,et al.  Maximum trimmed likelihood estimators: a unified approach, examples, and algorithms , 1997 .

[14]  Christine H. Müller,et al.  Breakdown Point and Computation of Trimmed Likelihood Estimators in Generalized Linear Models , 2003 .

[15]  Fabrice Heitz,et al.  3-D deformable image registration: a topology preservation scheme based on hierarchical deformation models and interval analysis optimization , 2005, IEEE Transactions on Image Processing.

[16]  Koenraad Van Leemput,et al.  Automated segmentation of multiple sclerosis lesions by model outlier detection , 2001, IEEE Transactions on Medical Imaging.

[17]  John K Kruschke,et al.  Bayesian data analysis. , 2010, Wiley interdisciplinary reviews. Cognitive science.

[18]  Pierre A. Devijver,et al.  Baum's forward-backward algorithm revisited , 1985, Pattern Recognit. Lett..