On the Complexity of Counting Fixed Points and Gardens of Eden in Sequential Dynamical Systems on Planar Bipartite Graphs

We study counting various types of configurations in certain classes of graph automata viewed as discrete dynamical systems. The graph automata models of our interest are Sequential and Synchronous Dynamical Systems (SDSs and SyDSs, respectively). These models have been proposed as the mathematical foundation for a theory of large-scale simulations of complex multi-agent systems. Our emphasis in this paper is on the computational complexity of counting the fixed point and the garden of Eden configurations in Boolean SDSs and SyDSs. We show that counting these configurations is, in general, computationally intractable. We also show that this intractability still holds when both the underlying graphs and the node update rules of these SDSs and SyDSs are severely restricted. In particular, we prove that the problems of exactly counting fixed points, gardens of Eden and two other types of S(y)DS configurations are all #P-complete, even if the SDSs and SyDSs are defined over planar bipartite graphs, and each of their nodes updates its state according to a monotone update rule given as a Boolean formula. We thus add these discrete dynamical systems to the list of those problem domains where counting combinatorial structures of interest is intractable even when the related decision problems are known to be efficiently solvable.

[1]  Reinhard Laubenbacher,et al.  Equivalence Relations on Finite Dynamical Systems , 2001, Adv. Appl. Math..

[2]  Klaus Sutner,et al.  On the Computational Complexity of Finite Cellular Automata , 1995, J. Comput. Syst. Sci..

[3]  Karel Culik,et al.  On Invertible Cellular Automata , 1987, Complex Syst..

[4]  Christian M. Reidys,et al.  On Acyclic Orientations and Sequential Dynamical Systems , 2001, Adv. Appl. Math..

[5]  Stephen Wolfram,et al.  Theory and Applications of Cellular Automata , 1986 .

[6]  Christos H. Papadimitriou,et al.  Computational complexity , 1993 .

[7]  Mark Jerrum,et al.  Polynomial-Time Approximation Algorithms for the Ising Model , 1990, SIAM J. Comput..

[8]  John J. Hopfield,et al.  Neural networks and physical systems with emergent collective computational abilities , 1999 .

[9]  S. Wolfram Computation theory of cellular automata , 1984 .

[10]  Harry B. Hunt,et al.  Gardens of Eden and Fixed Points in Sequential Dynamical Systems , 2001, DM-CCG.

[11]  Leslie G. Valiant,et al.  The Complexity of Enumeration and Reliability Problems , 1979, SIAM J. Comput..

[12]  Gustavo Deco,et al.  Finit Automata-Models for the Investigation of Dynamical Systems , 1997, Inf. Process. Lett..

[13]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[14]  Moore,et al.  Unpredictability and undecidability in dynamical systems. , 1990, Physical review letters.

[15]  Klaus Sutner,et al.  Computation theory of cellular automata , 1998 .

[16]  Harry B. Hunt,et al.  Predecessor and Permutation Existence Problems for Sequential Dynamical Systems , 2003, DMCS.

[17]  U. S. Army Decision Procedures for Surjectivity and Injectivity of Parallel Maps for Tessellation Structures , 2007 .

[18]  Christian M. Reidys,et al.  Sequential dynamical systems and applications to simulations , 2000, Proceedings 33rd Annual Simulation Symposium (SS 2000).

[19]  Péter Gács,et al.  Deterministic computations whose history is independent of the order of asynchronous updating , 2001, ArXiv.

[20]  M. Jerrum Two-dimensional monomer-dimer systems are computationally intractable , 1987 .

[21]  Harry B. Hunt,et al.  The Complexity of Planar Counting Problems , 1998, SIAM J. Comput..

[22]  Predrag T. Tosic On counting fixed point configurations in star networks , 2005, 19th IEEE International Parallel and Distributed Processing Symposium.

[23]  Dan Roth,et al.  On the Hardness of Approximate Reasoning , 1993, IJCAI.

[24]  Christian M. Reidys,et al.  Discrete, sequential dynamical systems , 2001, Discret. Math..

[25]  Salil P. Vadhan,et al.  The Complexity of Counting in Sparse, Regular, and Planar Graphs , 2002, SIAM J. Comput..

[26]  Leslie G. Valiant,et al.  The Complexity of Computing the Permanent , 1979, Theor. Comput. Sci..

[27]  Zsuzsanna Róka One-way Cellular Automata on Cayley Graphs , 1993, FCT.

[28]  Mohamed G. Gouda,et al.  Proving liveness for networks of communicating finite state machines , 1986, TOPL.

[29]  Christian M. Reidys,et al.  Elements of a theory of simulation II: sequential dynamical systems , 2000, Appl. Math. Comput..

[30]  Harry B. Hunt,et al.  Reachability problems for sequential dynamical systems with threshold functions , 2003, Theor. Comput. Sci..

[31]  Frederic Green,et al.  NP-Complete Problems in Cellular Automata , 1987, Complex Syst..

[32]  Gul A. Agha,et al.  Concurrency vs. sequential interleavings in 1-D threshold cellular automata , 2004, 18th International Parallel and Distributed Processing Symposium, 2004. Proceedings..

[33]  Eric Goles,et al.  Cellular automata and complex systems , 1999 .

[34]  Max H. Garzon,et al.  Models of massive parallelism: analysis of cellular automata and neural networks , 1995 .

[35]  John N. Tsitsiklis,et al.  On the predictability of coupled automata: an allegory about chaos , 1990, Proceedings [1990] 31st Annual Symposium on Foundations of Computer Science.

[36]  P. T. To,et al.  On Complexity of Counting Fixed Point Configurations in Certain Classes of Graph Automata , 2005 .

[37]  B A Huberman,et al.  Evolutionary games and computer simulations. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[38]  J. J. Hopfield,et al.  “Neural” computation of decisions in optimization problems , 1985, Biological Cybernetics.

[39]  Eric Rémila,et al.  Simulations of graph automata , 1998 .

[40]  M. E. Williams,et al.  TRANSIMS: TRANSPORTATION ANALYSIS AND SIMULATION SYSTEM , 1995 .

[41]  J. Myhill The converse of Moore’s Garden-of-Eden theorem , 1963 .

[42]  David S. Johnson,et al.  Computers and In stractability: A Guide to the Theory of NP-Completeness. W. H Freeman, San Fran , 1979 .

[43]  Seinosuke Toda,et al.  PP is as Hard as the Polynomial-Time Hierarchy , 1991, SIAM J. Comput..

[44]  Howard Gutowitz Cellular automata: theory and experiment : proceedings of a workshop , 1990 .

[45]  L Glass,et al.  Counting and classifying attractors in high dimensional dynamical systems. , 1996, Journal of theoretical biology.

[46]  Gul A. Agha,et al.  Characterizing Configuration Spaces of Simple Threshold Cellular Automata , 2004, ACRI.

[47]  C. Barrett,et al.  DICHOTOMY RESULTS FOR SEQUENTIAL DYNAMICAL SYSTEMS , 2000 .

[48]  Mark Jerrum,et al.  Approximating the Permanent , 1989, SIAM J. Comput..

[49]  Bruno Martin,et al.  A Geometrical Hierarchy on Graphs via Cellular Automata , 2002, Fundam. Informaticae.

[50]  T. E. Ingerson,et al.  Structure in asynchronous cellular automata , 1984 .

[51]  Christian M. Reidys,et al.  Elements of a theory of simulation III: equivalence of SDS , 2001, Appl. Math. Comput..

[52]  Christian M. Reidys,et al.  Elements of a theory of computer simulation I: Sequential CA over random graphs , 1999, Appl. Math. Comput..