Spreading Speeds in Slowly Oscillating Environments

In this paper, we derive exact asymptotic estimates of the spreading speeds of solutions of some reaction-diffusion models in periodic environments with very large periods. Contrarily to the other limiting case of rapidly oscillating environments, there was previously no explicit formula in the case of slowly oscillating environments. The knowledge of these two extremes permits to quantify the effect of environmental fragmentation on the spreading speeds. On the one hand, our analytical estimates and numerical simulations reveal speeds which are higher than expected for Shigesada–Kawasaki–Teramoto models with Fisher-KPP reaction terms in slowly oscillating environments. On the other hand, spreading speeds in very slowly oscillating environments are proved to be 0 in the case of models with strong Allee effects; such an unfavorable effect of aggregation is merely seen in reaction-diffusion models.

[1]  P. Fife Long time behavior of solutions of bistable nonlinear diffusion equationsn , 1979 .

[2]  Jerome A. Goldstein,et al.  Partial Differential Equations and Related Topics , 1975 .

[3]  P. Kareiva,et al.  Analyzing insect movement as a correlated random walk , 1983, Oecologia.

[4]  Henri Berestycki,et al.  Front propagation in periodic excitable media , 2002 .

[5]  M. Freidlin Limit Theorems for Large Deviations and Reaction-Diffusion Equations , 1985 .

[6]  Lionel Roques,et al.  Homogenization and influence of fragmentation in a biological invasion model , 2009, 0907.4951.

[7]  A. N. Stokes On two types of moving front in quasilinear diffusion , 1976 .

[8]  Tosio Kato Perturbation theory for linear operators , 1966 .

[9]  Henri Berestycki,et al.  The speed of propagation for KPP type problems. II , 2010 .

[10]  X. Xin,et al.  Existence and uniqueness of travelling waves in a reaction−diffusion equation with combustion nonlinearity , 1991 .

[11]  D. Aronson,et al.  Nonlinear diffusion in population genetics, combustion, and nerve pulse propagation , 1975 .

[12]  F. M. Scudo,et al.  Vito Volterra and theoretical ecology. , 1971, Theoretical population biology.

[13]  K. Kawasaki,et al.  An integrodifference model for biological invasions in a periodically fragmented environment , 2007 .

[14]  Michael A. McCarthy,et al.  The Allee effect, finding mates and theoretical models , 1997 .

[15]  Jianguo Liu,et al.  Individual-Based Modeling , 2002 .

[16]  J. Vázquez The Porous Medium Equation , 2006 .

[17]  W. Allee,et al.  The social life of animals, by W.C. Allee ... , 1938 .

[18]  Grégoire Nadin,et al.  The Effect of the Schwarz Rearrangement on the Periodic Principal Eigenvalue of a Nonsymmetric Operator , 2010, SIAM J. Math. Anal..

[19]  Richard R. Veit,et al.  Dispersal, Population Growth, and the Allee Effect: Dynamics of the House Finch Invasion of Eastern North America , 1996, The American Naturalist.

[20]  Lenya Ryzhik,et al.  KPP pulsating front speed-up by flows , 2007 .

[21]  Lionel Roques,et al.  Mathematical analysis of the optimal habitat configurations for species persistence. , 2007, Mathematical biosciences.

[22]  W. T. Calman,et al.  The Social Life of Animals , 1939, Nature.

[23]  N. Shigesada,et al.  Traveling periodic waves in heterogeneous environments , 1986 .

[24]  Henri Berestycki,et al.  Asymptotic spreading in heterogeneous diffusive excitable media , 2008 .

[25]  Henri Berestycki,et al.  Analysis of the periodically fragmented environment model : I – Species persistence , 2005, Journal of mathematical biology.

[26]  R. Fisher THE WAVE OF ADVANCE OF ADVANTAGEOUS GENES , 1937 .

[27]  L. M. Marsh,et al.  The form and consequences of random walk movement models , 1988 .

[28]  Mohammad El Smaily Pulsating travelling fronts: Asymptotics and homogenization regimes , 2007, European Journal of Applied Mathematics.

[29]  Brian Dennis,et al.  ALLEE EFFECTS: POPULATION GROWTH, CRITICAL DENSITY, AND THE CHANCE OF EXTINCTION , 1989 .

[30]  M. Bramson Convergence of solutions of the Kolmogorov equation to travelling waves , 1983 .

[31]  Jack Xin,et al.  Existence of KPP fronts in spatially-temporally periodic advection and variational principle for propagation speeds , 2005 .

[32]  Hiroshi Matano,et al.  A variational problem associated with the minimal speed of travelling waves for spatially periodic reaction-diffusion equations , 2010, 1004.0573.

[33]  Jack Xin,et al.  Front Propagation in Heterogeneous Media , 2000, SIAM Rev..

[34]  Lionel Roques,et al.  A viscosity solution method for the spreading speed formula in slowly varying media , 2011 .

[35]  M. Groom,et al.  Allee Effects Limit Population Viability of an Annual Plant , 1998, The American Naturalist.

[36]  Henri Berestycki,et al.  A population facing climate change: joint influences of Allee effects and environmental boundary geometry , 2008, Population Ecology.

[37]  Noriko Kinezaki,et al.  Modeling biological invasions into periodically fragmented environments. , 2003, Theoretical population biology.

[38]  N. Nadirashvili,et al.  Elliptic Eigenvalue Problems with Large Drift and Applications to Nonlinear Propagation Phenomena , 2005 .

[39]  Henri Berestycki,et al.  Analysis of the periodically fragmented environment model: II—biological invasions and pulsating travelling fronts , 2005 .

[40]  Geir Huse,et al.  Individual‒Based Models , 2008 .

[41]  W. Saarloos Front propagation into unstable states , 2003, cond-mat/0308540.

[42]  C. Cosner,et al.  Spatial Ecology via Reaction-Diffusion Equations , 2003 .

[43]  François Hamel,et al.  Qualitative properties of monostable pulsating fronts: exponential decay and monotonicity , 2008 .

[44]  D Mollison,et al.  Dependence of epidemic and population velocities on basic parameters. , 1991, Mathematical biosciences.

[45]  J. Vázquez The Porous Medium Equation: Mathematical Theory , 2006 .

[46]  L. Roques,et al.  Uniqueness and stability properties of monostable pulsating fronts , 2011 .

[47]  Odo Diekmann,et al.  The velocity of spatial population expansion , 1990 .

[48]  S. Heinze Large Convection Limits for KPP Fronts , 2005 .

[49]  Andrej Zlatoš Sharp Asymptotics for KPP Pulsating Front Speed-Up and Diffusion Enhancement by Flows , 2007, 0704.1163.

[50]  François Hamel,et al.  The speed of propagation for KPP type problems. I: Periodic framework , 2005 .

[51]  P. Martínez,et al.  Dynamique en grand temps pour une classe d'équations de type KPP en milieu périodique , 2008 .

[52]  Peter Kuchment,et al.  Waves in Periodic and Random Media , 2003 .

[53]  Hans F. Weinberger,et al.  On spreading speeds and traveling waves for growth and migration models in a periodic habitat , 2002, Journal of mathematical biology.

[54]  Jack Xin,et al.  Existence of KPP type fronts in space-time periodic shear flows and a study of minimal speeds based on variational principle , 2004 .

[55]  P. Turchin Quantitative analysis of movement : measuring and modeling population redistribution in animals and plants , 1998 .

[56]  Ludek Berec,et al.  Multiple Allee effects and population management. , 2007, Trends in ecology & evolution.

[57]  N. Shigesada,et al.  Spatial dynamics of invasion in sinusoidally varying environments , 2006, Population Ecology.

[58]  Traveling fronts in space-time periodic media , 2009, 1609.01431.