Syntheses, crystal structures, and electrochemical properties of multi-ferrocenyl resorcinarenes

[1]  M. Botta,et al.  Flattened cone 2,8,14,20-tetrakis(L-valinamido)[4]resorcinarene: an enantioselective allosteric receptor in the gas phase. , 2006, Angewandte Chemie.

[2]  P. Beer,et al.  Calixarene-based Anion Receptors , 2005 .

[3]  Shigehisa Akine,et al.  Stepwise and dramatic enhancement of anion recognition with a triple-site receptor based on the calix[4]arene framework using two different cationic effectors. , 2005, Journal of the American Chemical Society.

[4]  R. Puddephatt,et al.  Self-Assembly of Coordination Polymers from Tetraphosphinitoresorcinarene Complexes of Silver(I) , 2005 .

[5]  M. Soriaga,et al.  The hydrophilic phosphatriazaadamantane ligand in the development of H2 production electrocatalysts: iron hydrogenase model complexes. , 2004, Journal of the American Chemical Society.

[6]  K. Rissanen,et al.  Alkoxy-, acyloxy-, and bromomethylation of resorcinarenes. , 2004, Organic letters.

[7]  J. Rebek,et al.  Enhanced thermodynamic and kinetic stability of calix[4]arene dimers locked in the cone conformation. , 2004, The Journal of organic chemistry.

[8]  S. J. Loeb,et al.  Amide based receptors for anions , 2003 .

[9]  P. Beer,et al.  Transition metal and organometallic anion complexation agents , 2003 .

[10]  O. Chailapakul,et al.  Calix[4]arenes containing ferrocene amide as carboxylate anion receptors and sensors. , 2003, Organic letters.

[11]  J. Atwood,et al.  Anion-sealed single-molecule capsules. , 2003, Chemical communications.

[12]  Thawatchai Tuntulani,et al.  Lower rim tetra-substituted and upper rim ferrocene amide calix[4]arenes: synthesis, conformation and anion-binding properties , 2001 .

[13]  Philip A. Gale,et al.  Anion Recognition and Sensing: The State of the Art and Future Perspectives. , 2001, Angewandte Chemie.

[14]  P. Beer Electrochemical and optical sensing of anions by transition metal based receptors , 2000 .

[15]  Boehmer,et al.  Self-Assembled Hydrogen-Bonded Dimeric Capsules with High Kinetic Stability This work was supported by the Deutsche Forschungsgemeinschaft (Bo523/14-1) and the Fonds der Chemischen Industrie. We also thank Prof. J. Okuda, (Institut für Anorganische Chemie) for generous access to the NMR facilities. , 2000, Angewandte Chemie.

[16]  P. Beer,et al.  Alkali metal cation cooperative anion recognition by heteroditopic bis(calix[4]arene) rhenium(I) bipyridyl and ferrocene receptor molecules , 2000 .

[17]  P. Beer,et al.  Anion interaction with ferrocene-functionalised cyclic and open-chain polyaza and aza-oxa cycloalkanes , 2000 .

[18]  P. Beer,et al.  Anion Recognition Properties of New Upper-Rim Cobaltocenium Calix[4]arene Receptors , 1999 .

[19]  P. Beer,et al.  SYNTHESIS AND CHARACTERISATION OF NOVEL RUTHENIUM(II) BIPYRIDYL AND FERROCENOYL CAVITAND RECEPTORS FOR THE RECOGNITION OF ANIONIC GUESTS , 1999 .

[20]  Philip A. Gale,et al.  Lower-rim ferrocenyl substituted calixarenes: New electrochemical sensors for anions , 1998 .

[21]  D. Matt,et al.  Calixarene and resorcinarene ligands in transition metal chemistry , 1997 .

[22]  D. Astruc,et al.  The Dendritic Effect in Molecular Recognition: Ferrocene Dendrimers and Their Use as Supramolecular Redox Sensors for the Recognition of Small Inorganic Anions , 1997 .

[23]  P. Beer,et al.  A new carboxylate anion selective cobaltocenium calix[4]arene receptor , 1997 .

[24]  Hu-lin Li,et al.  The electrochemistry of the inclusion complex of anthraquinone withβ-Cyclodextrin studied by means of OSWV , 1996 .

[25]  P. Beer,et al.  Anion recognition properties of new-rim bis[rhenium(I) bipyridyl, ruthenium(II) bis(bipyridyl), cobaltocenium]calix[4]arene receptors dictated by lower-rim substituents , 1996 .

[26]  P. Beer,et al.  Anion Recognition by Redox-Responsive Ditopic Bis-Cobaltocenium Receptor Molecules Including a Novel Calix[4]arene Derivative That Binds a Dicarboxylate Dianion , 1995 .

[27]  Philip A. Gale,et al.  A neutral upper to lower rim linked bis-calix[4]arene receptor that recognises anionic guest species , 1995 .

[28]  Philip A. Gale,et al.  Synthesis and X-ray crystal structure of a new redox-active calix[5]arene containing a totally included ethanol molecule , 1995 .

[29]  P. Beer,et al.  Selective electrochemical recognition of the dihydrogen phosphate anion in the presence of hydrogen sulfate and chloride ions by new neutral ferrocene anion receptors , 1993 .

[30]  P. Beer,et al.  Dicarboxylate anion recognition by a redox-responsive ditopic bis(cobalticinium) calix[4]arene receptor molecule , 1993 .

[31]  P. Beer,et al.  Multi redox-active macrocyclic host molecules containing multiple benzo crown ether and ferrocenyl moieties that bind bipyridinium dications: syntheses, co-ordination and electrochemical properties , 1991 .

[32]  David J. Williams,et al.  Dimer and trimer calix[4]arenes containing multiple metallocene redox-active centres. Single-crystal X-ray structure of a bis(ferrocene)-bis(p-t-butylcalix[4]-arene) hydrophobia host molecule , 1990 .

[33]  S. Harris,et al.  Synthesis, x-ray crystal structures, and cation-binding properties of alkyl calixaryl esters and ketones, a new family of macrocyclic molecular receptors , 1989 .

[34]  A. Keefe,et al.  New bis-ferrocene calix[4]arene hydrophobic receptor molecules and crystal structure of one of them , 1988 .

[35]  P. Beer,et al.  Redox-active cavitand host molecules containing multiple redox centres, syntheses and X-ray crystal structure of a dichloromethane inclusion complex , 1988 .

[36]  A. Keefe,et al.  The synthesis of metallocene calix[4]arenes , 1987 .

[37]  I. Motoyama,et al.  A Simple Modification of Vilsmeier Method for the Preparation of Formylferrocene , 1968 .

[38]  P. Hemmerich,et al.  Progress in the chemistry and molecular biology of flavins and flavocoenzymes. , 1965, Angewandte Chemie.