Interlaminar stress calculation in composite and sandwich plates in NURBS Isogeometric finite element analysis

Abstract This research paper describes the development of NURBS Isogeometric finite element analysis and post-processor for interlaminar stress calculation in composite and sandwich plates. First-order, shear-deformable laminate composite plate theory is utilized in deriving the governing equations using a variational formulation. Linear, quadratic, higher order and k -refined NURBS elements are constructed and numerical validation is performed for laminated composite and sandwich plates. Lagrange finite element suffers from higher order stress gradient oscillations due to Gibbs phenomenon and require alternative stress recovery procedures for accurate interlaminar stress calculations, especially interlaminar normal stress. In this paper, direct post-processing is performed which computes interlaminar shear and normal stresses from higher order gradients of NURBS basis in a single step procedure. Interlaminar stresses are found to be in an excellent agreement with 3D elasticity solution and FSDT along with k -refinement procedure of NURBS basis is found to compute equivalent or better interlaminar normal stress than higher-order shear deformation theory.

[1]  Anath Fischer,et al.  New B‐Spline Finite Element approach for geometrical design and mechanical analysis , 1998 .

[2]  Keejoo Lee,et al.  A Postprocessing Approach to Determine Transverse Stresses in Geometrically Nonlinear Composite and Sandwich Structures , 2003 .

[3]  Jörg Peters,et al.  Subdivision Surfaces , 2002, Handbook of Computer Aided Geometric Design.

[4]  Jindong Chen,et al.  Modeling with cubic A-patches , 1995, TOGS.

[5]  Olivier Polit,et al.  A multilayered/sandwich triangular finite element applied to linear and non-linear analyses , 2002 .

[6]  E. Hinton,et al.  The finite element analysis of homogeneous and laminated composite plates using a simple higher order theory , 1986 .

[7]  John S. Campbell,et al.  Local and global smoothing of discontinuous finite element functions using a least squares method , 1974 .

[8]  J. Whitney,et al.  Shear Deformation in Heterogeneous Anisotropic Plates , 1970 .

[9]  E. Reissner The effect of transverse shear deformation on the bending of elastic plates , 1945 .

[10]  Yong Hyup Kim,et al.  Stress recovery in laminated composite and sandwich panels undergoing finite rotation , 2003 .

[11]  P. Bar-Yoseph,et al.  Mechanically based models: Adaptive refinement for B‐spline finite element , 2003 .

[12]  Ralph R. Martin,et al.  Mathematics of Surfaces , 2003, Lecture Notes in Computer Science.

[13]  Song Cen,et al.  Application of the quadrilateral area co‐ordinate method: a new element for Mindlin–Reissner plate , 2006 .

[14]  Atef F. Saleeb,et al.  Stress Projection, Layerwise-Equivalent, Formulation for Accurate Predictions of Transverse Stresses in Laminated Plates and Shells , 2000, Int. J. Comput. Eng. Sci..

[15]  Rakesh K. Kapania,et al.  Geometrically nonlinear NURBS isogeometric finite element analysis of laminated composite plates , 2012 .

[17]  Tom Lyche,et al.  Curves and Surfaces , 2014, Lecture Notes in Computer Science.

[18]  Tarun Kant,et al.  C0 Finite element geometrically non-linear analysis of fibre reinforced composite and sandwich laminates based on a higher-order theory , 1992 .

[19]  J. Barlow,et al.  Optimal stress locations in finite element models , 1976 .

[20]  T. Hughes,et al.  Isogeometric analysis : CAD, finite elements, NURBS, exact geometry and mesh refinement , 2005 .

[21]  Interlaminar stresses in antisymmetric angle-ply laminates , 2007 .

[22]  G. Prathap,et al.  Consistent thermal stress evaluation in finite elements , 1995 .

[23]  R. D. Mindlin,et al.  Influence of rotary inertia and shear on flexural motions of isotropic, elastic plates , 1951 .

[24]  Ahmed K. Noor,et al.  Transverse Shear Stresses and Their Sensitivity Coefficients in Multilayered Composite Panels , 1994 .

[25]  J. N. Reddy,et al.  A refined mixed shear flexible finite element for the nonlinear analysis of laminated plates , 1986 .

[26]  J. N. Reddy,et al.  Analysis of laminated composite plates using a higher‐order shear deformation theory , 1985 .

[27]  J. T. Oden,et al.  On the calculation of consistent stress distributions in finite element approximations , 1971 .

[28]  Ki-Du Kim,et al.  A 4-node co-rotational ANS shell element for laminated composite structures , 2007 .

[29]  Raimund Rolfes,et al.  Improved transverse shear stresses in composite finite elements based on first order shear deformation theory , 1997 .

[30]  Prediction of interlaminar stresses in laminated plates using globalorthogonal interpolation polynomials , 1992 .

[31]  Tom Lyche,et al.  Discrete B-splines and subdivision techniques in computer-aided geometric design and computer graphics , 1980 .

[32]  J. Z. Zhu,et al.  The superconvergent patch recovery and a posteriori error estimates. Part 1: The recovery technique , 1992 .

[33]  A Mixed Finite Element for the Nonlinear Bending Analysis of Laminated Composite Plates Based on FSDT , 2008 .

[34]  Hiroyuki Matsunaga,et al.  Interlaminar stress analysis of laminated composite beams according to global higher-order deformation theories , 2002 .

[35]  A. Makeev,et al.  An Iterative Method for Solving Elasticity Problems for Composite Laminates , 2000 .

[36]  T. Tran-Cong,et al.  Computation of Laminated Composite Plates using Integrated Radial Basis Function Networks , 2007 .

[37]  S. Vel,et al.  Analytical Solution for Rectangular Thick Laminated Plates Subjected to Arbitrary Boundary Conditions , 1999 .

[39]  Tarun Kant,et al.  ON ACCURATE ESTIMATION OF TRANSVERSE STRESSES IN MULTILAYER LAMINATES , 1994 .

[40]  E. Carrera Historical review of Zig-Zag theories for multilayered plates and shells , 2003 .

[41]  J. Reddy,et al.  THEORIES AND COMPUTATIONAL MODELS FOR COMPOSITE LAMINATES , 1994 .

[42]  Tony DeRose,et al.  A multisided generalization of Bézier surfaces , 1989, TOGS.

[43]  J. Reddy A Simple Higher-Order Theory for Laminated Composite Plates , 1984 .

[44]  Sandeep S. Pendhari,et al.  Elasticity solution for cross-ply composite and sandwich laminates , 2008 .

[45]  E. Reissner ON THE THEORY OF BENDING OF ELASTIC PLATES , 1944 .

[46]  D. J. Chen,et al.  Interfacial stress estimation using least-square extrapolation and local stress smoothing in laminated composites , 1996 .